cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008647 Expansion of g.f.: (1+x^9)/((1-x^4)*(1-x^6)).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 4, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 3, 5, 4, 4, 4, 5, 4, 5, 4, 5, 5, 5, 4, 6, 5, 5, 5, 6, 5, 6, 5, 6, 6, 6, 5, 7, 6, 6, 6, 7, 6
Offset: 0

Views

Author

Keywords

Comments

Molien series of binary octahedral group of order 48. Also Molien series for W_1 - W_3 of shadow of singly-even binary self-dual code.

References

  • T. A. Springer, Invariant Theory, Lecture Notes in Math., Vol. 585, Springer, p. 97.

Programs

  • GAP
    a:=[1,0,0,0,1,0,1];; for n in [8..80] do a[n]:=a[n-3]+a[n-4]-a[n-7]; od; a; # G. C. Greubel, Sep 06 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x^9)/((1-x^4)*(1-x^6)) )); // G. C. Greubel, Sep 06 2019
    
  • Maple
    g:= proc(n) local m, r; m:= iquo(n, 12, 'r'); irem(r+1,2) *(m+1) -`if`(r=2, 1, 0) end: a:= n-> g(n) +`if`(n>8, g(n-9), 0); seq(a(n), n=0..100); # Alois P. Heinz, Oct 06 2008
  • Mathematica
    CoefficientList[Series[(1+x^9)/((1-x^4)*(1-x^6)),{x,0,80}],x] (* or *) LinearRecurrence[{0,0,1,1,0,0,-1}, {1,0,0,0,1,0,1}, 80] (* Harvey P. Dale, Oct 10 2011 *)
  • PARI
    a(n)=(9*(-1)^n+2*(n+7)+6*(-1)^(n\2))\24 \\ Charles R Greathouse IV, Feb 10 2017
    
  • Sage
    def A008647_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^9)/((1-x^4)*(1-x^6))).list()
    A008647_list(80) # G. C. Greubel, Sep 06 2019
    

Formula

G.f.: (1 - x^3 + x^6) / ( (1+x)*(1+x+x^2)*(1+x^2)*(1-x)^2 ).
G.f.: (1+x^6+x^9+x^15)/((1-x^4)*(1-x^12)).
It appears that the first differences have period 12. Hence in blocks of 12, the sequence is {1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0}+k for k=0,1,2,... - T. D. Noe, May 23 2008
a(n) = (6*A057077(n) +8*A057078(n) +1 +2*n +9*(-1)^n)/24. - R. J. Mathar, Jun 28 2009
a(n) = a(n-3) + a(n-4) - a(n-7), a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(5)=0, a(6)=1. - Harvey P. Dale, Oct 10 2011
a(n) = floor((9*(-1)^n+2*(n+7)+6*(-1)^floor(n/2))/24). - Tani Akinari, Jun 17 2013
a(n) = floor(n/2) + floor(n/3) + floor(n/4) - n + 1. - Ridouane Oudra, Mar 21 2021