cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008672 Expansion of 1/((1-x)*(1-x^3)*(1-x^5)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18, 20, 22, 23, 25, 27, 29, 31, 33, 35, 37, 40, 42, 44, 47, 49, 52, 55, 57, 60, 63, 66, 69, 72, 75, 78, 82, 85, 88, 92, 95, 99, 103, 106, 110, 114, 118, 122, 126, 130, 134, 139, 143, 147, 152, 156, 161, 166
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into odd parts less than or equal to 5.
1/((1-x^2)*(1-x^6)*(1-x^10)) is the Molien series for the icosahedral group [3,5] of order 120.
Number of partitions (d1,d2,d3) of n such that 0 <= d1/1 <= d2/2 <= d3/3. - Seiichi Manyama, Jun 04 2017

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 6*x^9 + 7*x^10 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 120, D(n;1,3,5).
  • W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 164 etc.
  • F. Hirzebruch, Letter to N. J. A. Sloane, quoted in Ges. Abh. II, 796-798.
  • F. Klein, Lectures on the Icosahedron ..., 2nd Rev. Ed., 1913; reprinted by Dover, NY, 1956; see pp. 236-243.
  • L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 23).

Crossrefs

Programs

  • GAP
    List([0..70], n-> Int((n^2+9*n+30)/30) ); # G. C. Greubel, Sep 08 2019
  • Magma
    [Round((n+3)*(n+6)/30): n in [0..60]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    seq(coeff(series(1/((1-x)*(1-x^3)*(1-x^5)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 08 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^3)(1-x^5)),{x,0,70}],x] (* or *) LinearRecurrence[{1,0,1,-1,1,-1,0,-1,1},{1,1,1,2,2,3,4,4,5},70] (* Harvey P. Dale, Feb 07 2012 *)
  • PARI
    {a(n) = (n^2 + 9*n)\30 + 1} /* Michael Somos, Nov 25 2002 */
    
  • Sage
    [floor((n^2+9*n+30)/30) for n in (0..70)] # G. C. Greubel, Sep 08 2019
    

Formula

a(n) = round((n+3)*(n+6)/30).
a(n) = A025799(2n).
a(n) = floor(n^2/30 + 3*n/10 + 1). - Michael Somos, Nov 25 2002
G.f.: 1/((1-x)*(1-x^3)*(1-x^5)).
a(n) = a(-9 - n). - Michael Somos, Nov 16 2005
a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-5) - a(n-6) - a(n-8) + a(n-9); a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=2, a(5)=3, a(6)=4, a(7)=4, a(8)=5. - Harvey P. Dale, Feb 07 2012