cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008673 Expansion of 1/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 19, 21, 24, 27, 30, 34, 38, 42, 46, 51, 56, 61, 67, 73, 79, 86, 93, 100, 108, 116, 125, 134, 143, 153, 163, 174, 185, 197, 209, 221, 235, 248, 262, 277, 292, 308, 324, 341, 358, 376, 395, 414, 434, 454, 475, 497, 519, 542, 566, 590
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 3, 5, and 7. - Joerg Arndt, Jul 08 2013
Number of partitions (d1,d2,d3,d4) of n such that 0 <= d1/1 <= d2/2 <= d3/3 <= d4/4. - Seiichi Manyama, Jun 04 2017

Examples

			There are a(7)=5 partitions of n=7 into parts 1, 3, 5, and 7: (7), (511), (331), (31111), and (1111111). - _David Neil McGrath_, Feb 14 2015
		

Crossrefs

Cf. A259094.

Programs

  • GAP
    List([0..70], n-> Int((n^3+24*n^2+171*n+630)/630) ); # G. C. Greubel, Sep 08 2019
  • Magma
    [Floor((n^3+24*n^2+171*n+630)/630): n in [0..70]]; // G. C. Greubel, Sep 08 2019
    
  • Maple
    seq(coeff(series(1/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)), x, n+1), x, n), n = 0 .. 70); # G. C. Greubel, Sep 08 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^3)(1-x^5)(1-x^7)), {x,0,70}], x] (* Vincenzo Librandi, Jun 22 2013 *)
    LinearRecurrence[{1,0,1,-1,1,-1,1,-2,1,-1,1,-1,1,0,1,-1}, {1,1,1,2,2,3, 4,5,6,7,9,10,12,14,16,19}, 70] (* Harvey P. Dale, Jul 08 2019 *)
  • PARI
    vector(70, n, m=n-1; (m^3+24*m^2+171*m+630)\630 ) \\ G. C. Greubel, Sep 08 2019
    
  • Sage
    [floor((n^3+24*n^2+171*n+630)/630) for n in (0..70)] # G. C. Greubel, Sep 08 2019
    

Formula

a(n) = floor((n^3 + 24*n^2 + 171*n + 630)/630). - Tani Akinari, Jul 08 2013
a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - 2*a(n-8) + a(n-9) - a(n-10) + a(n-11) - a(n-12) + a(n-13) + a(n-15) - a(n-16). - David Neil McGrath, Feb 14 2015