cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008674 Expansion of 1/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)*(1-x^9)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 19, 23, 26, 30, 35, 40, 45, 52, 58, 65, 74, 82, 91, 102, 113, 124, 138, 151, 165, 182, 198, 216, 236, 256, 277, 301, 325, 350, 379, 407, 437, 471, 504, 539, 578, 617, 658, 703, 748, 795, 847, 899, 953, 1012, 1071, 1133, 1200, 1267, 1337, 1413, 1489, 1568, 1653
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into odd parts <= 9. - Seiichi Manyama, Jun 04 2017
Number of partitions (d1,d2,...,d5) of n such that 0 <= d1/1 <= d2/2 <= ... <= d5/5. - Seiichi Manyama, Jun 04 2017

Crossrefs

Cf. A259094.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/&*[1-x^(2*j+1): j in [0..4]] )); // G. C. Greubel, Sep 08 2019
    
  • Maple
    seq(coeff(series(1/mul(1-x^(2*j+1), j=0..4), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 08 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^3)(1-x^5)(1-x^7)(1-x^9)), {x,0,70}], x] (* Vincenzo Librandi, Jun 22 2013 *)
    LinearRecurrence[{1,0,1,-1,1,-1,1,-2,2,-2,1,-2,2,-1,2,-2,2,-1,1,-1,1,-1, 0,-1,1}, {1,1,1,2,2,3,4,5,6,8,10,11,14,16,19,23,26,30,35,40,45,52,58, 65,74}, 70] (* Harvey P. Dale, Aug 13 2016 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/prod(j=0,4,1-x^(2*j+1)) ) \\ G. C. Greubel, Sep 08 2019
    
  • PARI
    a(n) = (n^4+50*n^3+855*n^2+6030*n - n*280*(n%3) +23800)\22680 \\ Hoang Xuan Thanh, Aug 12 2025
  • Sage
    def A008674_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/prod(1-x^(2*j+1) for j in (0..4)) ).list()
    A008674_list(70) # G. C. Greubel, Sep 08 2019
    

Formula

a(n) = floor((n^4+50*n^3+855*n^2+6030*n+23800)/22680 - n*(n mod 3)/81). - Hoang Xuan Thanh, Aug 12 2025

Extensions

Typo in name fixed by Vincenzo Librandi, Jun 22 2013