cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008675 Expansion of 1/( Product_{j=0..5} (1-x^(2*j+1)) ).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 21, 25, 29, 34, 40, 46, 53, 62, 70, 80, 91, 103, 116, 131, 147, 164, 184, 204, 227, 252, 278, 307, 339, 372, 408, 448, 489, 534, 583, 634, 689, 749, 811, 878, 950, 1025, 1106, 1192, 1282, 1378, 1481, 1588, 1702, 1823, 1949, 2083
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 3, 5, 7, 9, and 11. - Joerg Arndt, Jul 09 2013
Number of partitions (d1,d2,...,d6) of n such that 0 <= d1/1 <= d2/2 <= ... <= d6/6. - Seiichi Manyama, Jun 04 2017

Crossrefs

Cf. A259094.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 65); Coefficients(R!( 1/&*[1-x^(2*j+1): j in [0..5]] )); // G. C. Greubel, Sep 08 2019
    
  • Maple
    seq(coeff(series(1/mul(1-x^(2*j+1), j=0..5), x, n+1), x, n), n = 0..65); # G. C. Greubel, Sep 08 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^3)(1-x^5)(1-x^7)(1-x^9)(1-x^11)), {x, 0, 65}], x] (* Vincenzo Librandi, Jun 23 2013 *)
    LinearRecurrence[{1,0,1,-1,1,-1,1,-2,2,-2,2,-3,2,-2,3,-3,3,-2,3,-3,3,-2,2,-3,2,-2,2,-2,1,-1,1,-1,1,0,1,-1},{1,1,1,2,2,3,4,5,6,8,10,12,15,17,21,25,29,34,40,46,53,62,70,80,91,103,116,131,147,164,184,204,227,252,278,307},60] (* Harvey P. Dale, Oct 29 2022 *)
  • PARI
    a(n)=(46200*((n\3+1)*[2,-1,-1][n%3+1]+[10,-4,-7][n%3+1]) +3*n^5+ 270*n^4+9005*n^3+136350*n^2+908260*n+3603600)\3742200  \\ Tani Akinari, Jul 09 2013
    
  • PARI
    Vec(1/((1-x)*(1-x^3)*(1-x^5)*(1-x^7)*(1-x^9)*(1-x^11))+O(x^66)) \\ Joerg Arndt, Jul 09 2013
    
  • Sage
    def A008674_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/prod(1-x^(2*j+1) for j in (0..5)) ).list()
    A008674_list(65) # G. C. Greubel, Sep 08 2019

Extensions

Typo in name fixed by Vincenzo Librandi, Jun 23 2013