cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008727 Molien series for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into two kinds of 1's and one kind of 9. - Joerg Arndt, Dec 27 2014

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,11,13];; for n in [12..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-9]-2*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^9)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    seq(coeff(series(1/((1-x)^2*(1-x^9)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 09 2019
  • Mathematica
    Drop[Accumulate[Floor[Range[70]/9]], 8] (* Jean-François Alcover, Mar 27 2013 *)
    CoefficientList[Series[1/(1-x)^2/(1-x^9), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,11,13},120] (* Harvey P. Dale, Feb 13 2022 *)
  • PARI
    Vec(1/(1-x)^2/(1-x^9)+O(x^66)) /* Joerg Arndt, Mar 27 2013 */
    
  • Sage
    def A008727_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)^2*(1-x^9))).list()
    A008727_list(70) # G. C. Greubel, Sep 09 2019
    

Formula

G.f.: 1/((1-x)^2*(1-x^9)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+9} floor(j/9).
a(n-9) = (1/2)*floor(n/9)*(2*n - 7 - 9*floor(n/9)). (End)