cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008748 Expansion of (1 + x^5) / ((1-x) * (1-x^2) * (1-x^3)) in powers of x.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 23, 27, 31, 36, 41, 46, 52, 58, 64, 71, 78, 85, 93, 101, 109, 118, 127, 136, 146, 156, 166, 177, 188, 199, 211, 223, 235, 248, 261, 274, 288, 302, 316, 331, 346, 361, 377, 393, 409, 426, 443, 460, 478, 496, 514, 533, 552, 571
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 8*x^6 + 10*x^7 + 13*x^8 + ...
		

Crossrefs

Programs

  • GAP
    List([0..60], n-> 1 + Int(n*(n+1)/6)); # G. C. Greubel, Aug 03 2019
  • Magma
    [1 + Floor(n*(n+1)/6): n in [0..60]]; // G. C. Greubel, Aug 03 2019
    
  • Maple
    A061347 := proc(n) op(1+(n mod 3),[-2,1,1]) ; end proc:
    A008748 := proc(n) 1/6*n^2+1/6*n+8/9+A061347(n+2)/9 ; end proc:
    seq(A008748(n),n=0..60) ; # R. J. Mathar, Mar 22 2011
  • Mathematica
    Table[Floor[((n*(n+1)+2)/2+3)/3],{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2010 *)
    CoefficientList[Series[(1+x^5)/((1-x)(1-x^2)(1-x^3)), {x,0,60}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,1,-2,1}, {1,1,2,3,4}, 60] (* Harvey P. Dale, Apr 08 2019 *)
  • PARI
    {a(n) = (n^2 + n)\6 + 1} /* Michael Somos, Sep 06 2013 */
    
  • Sage
    ((1 + x^5)/((1-x)*(1-x^2)*(1-x^3))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
    

Formula

a(n) = 1 + floor( n(n+1)/6 ). - Michael Somos, Jun 16 1999
a(n) = 1 + A001840(n-1). - Michael Somos, Jun 16 1999
a(n) = 1 + a(n-1) + a(n-3) - a(n-4) if n>4; a(n) = n if n=1..4. - Michael Somos, Jun 16 1999
a(-1-n) = a(n). - Michael Somos, Sep 06 2013