cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008780 a(n) = (n-dimensional partitions of 6) + C(n,4) + C(n,3).

Original entry on oeis.org

1, 11, 48, 141, 331, 672, 1232, 2094, 3357, 5137, 7568, 10803, 15015, 20398, 27168, 35564, 45849, 58311, 73264, 91049, 112035, 136620, 165232, 198330, 236405, 279981, 329616, 385903, 449471, 520986, 601152, 690712, 790449, 901187, 1023792, 1159173, 1308283
Offset: 0

Views

Author

Keywords

Comments

These are the conjectured numbers of d-dimensional partitions for n=6, coming from a formula proposed by MacMahon in the general case that turned out to be wrong. Still, here for n=6, MacMahon's formula coincides for d < 3 with the first three terms of A042984. - Michel Marcus, Aug 16 2013
Binomial transform of [1,10,27,29,12,1,0,0,0,...], 6th row of A116672. - R. J. Mathar, Jul 18 2017

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. '76, p. 190.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120); # G. C. Greubel, Sep 11 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+5*x-3*x^2-2*x^3)/(1-x)^6 )); // G. C. Greubel, Sep 11 2019
    
  • Maple
    seq(1+10*n+27*binomial(n,2)+29*binomial(n,3)+12*binomial(n,4)+binomial(n,5), n=0..40);
  • Mathematica
    Table[1+10n+27Binomial[n,2]+29Binomial[n,3]+12Binomial[n,4]+ Binomial[n,5], {n,0,40}] (* Harvey P. Dale, Jul 27 2011 *)
    CoefficientList[Series[(1+5x-3x^2-2x^3)/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 17 2013 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,48,141,331,672},40] (* Harvey P. Dale, Aug 28 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+5*x-3*x^2-2*x^3)/(1-x)^6) \\ G. C. Greubel, Sep 11 2019
    
  • Sage
    [(120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120 for n in (0..40)] # G. C. Greubel, Sep 11 2019
    

Formula

G.f.: (1 + 5*x - 3*x^2 - 2*x^3)/(1-x)^6. - Colin Barker, Sep 05 2012
From G. C. Greubel, Sep 11 2019: (Start)
a(n) = (120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120.
E.g.f.: (120 + 1200*x + 1620*x^2 + 580*x^3 + 60*x^4 + x^5)*exp(x)/120. (End)

Extensions

Description corrected by Alford Arnold, Aug 1998
More terms added by G. C. Greubel, Sep 11 2019