A007326
Difference between A000294 and the number of solid partitions of n (A000293).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 3, 8, 19, 40, 83, 176, 365, 775, 1643, 3483, 7299, 15170, 31010, 62563, 124221, 243296, 469856, 896491, 1690475, 3155551, 5834871, 10701036, 19479021, 35227889, 63335778, 113286272, 201687929, 357585904, 631574315, 1111614614, 1950096758, 3410420973, 5946337698, 10337420278, 17918573379, 30968896662, 53366449357, 91689380979, 157058043025, 268210414468, 456613323892
Offset: 0
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 0..72
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
A007327
Difference between two partition g.f.s.
Original entry on oeis.org
0, 0, 0, 0, 0, 5, 20, 69, 200, 521, 1294, 3126, 7364, 17309, 40577, 95460, 224971, 531368, 1252664, 2943095, 6870029, 15911618, 36507381, 82930347, 186414619, 414654766, 912766795, 1989007381, 4292038414, 9175624264, 19442250125, 40851448761, 85157787033, 176200110937
Offset: 1
- George E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100; alternative link.
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
A042984
Number of n-dimensional partitions of 6.
Original entry on oeis.org
1, 11, 48, 140, 326, 657, 1197, 2024, 3231, 4927, 7238, 10308, 14300, 19397, 25803, 33744, 43469, 55251, 69388, 86204, 106050, 129305, 156377, 187704, 223755, 265031, 312066, 365428, 425720, 493581, 569687, 654752, 749529, 854811, 971432
Offset: 0
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.
-
List([0..40],n->(n+1)*(n+4)*(n^3+40*n^2+61*n+30)/120); # Muniru A Asiru, Feb 17 2019
-
[1 + 10*n + 27*Binomial(n,2) + 28*Binomial(n,3) + 11*Binomial(n,4) + Binomial(n,5): n in [0..40]]; // Vincenzo Librandi, Oct 27 2013
-
a:= n-> 1+10*n+27*binomial(n, 2)+28*binomial(n, 3)
+11*binomial(n, 4)+binomial(n, 5):
seq(a(n), n=0..34);
-
LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,48,140,326,657},40] (* Harvey P. Dale, Jan 27 2013 *)
CoefficientList[Series[(x^4 -3x^3 -3x^2 +5x +1)/(x-1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 27 2013 *)
-
my(x='x+O('x^40)); Vec((x^4-3*x^3-3*x^2+5*x+1)/(x-1)^6) \\ G. C. Greubel, Feb 17 2019
-
((x^4-3*x^3-3*x^2+5*x+1)/(x-1)^6).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019
A116672
Triangle read by rows in which the binomial transform of the n-th row gives the Euler transform of the n-th diagonal of Pascal's triangle (A007318).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 7, 1, 1, 10, 27, 29, 12, 1, 1, 14, 57, 96, 72, 21, 1, 1, 21, 117, 277, 319, 176, 38, 1
Offset: 1
Row 6 is 1 10 27 29 12 1 generating 1 11 48 141 ... (A008780) the seventh term in the Euler transforms of 1,1,1,...; 1,2,3,...; 1,3,6,... 1,4,10,... etc.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 6, 11, 7, 1;
1, 10, 27, 29, 12, 1;
1, 14, 57, 96, 72, 21, 1;
1, 21, 117, 277, 319, 176, 38, 1;
...
A289656
Triangle read by rows: row n gives the first n terms of the binomial transform of the n-th row of A116672.
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 5, 13, 26, 1, 7, 24, 59, 120, 1, 11, 48, 141, 331, 672, 1, 15, 86, 310, 855, 1982, 4067, 1, 22, 160, 692, 2214, 5817, 13301, 27428
Offset: 1
Triangle begins:
[1]
[1, 2]
[1, 3, 6]
[1, 5, 13, 26]
[1, 7, 24, 59, 120]
[1, 11, 48, 141, 331, 672]
[1, 15, 86, 310, 855, 1982, 4067]
[1, 22, 160, 692, 2214, 5817, 13301, 27428]
...
Showing 1-5 of 5 results.
Comments