cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007326 Difference between A000294 and the number of solid partitions of n (A000293).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 8, 19, 40, 83, 176, 365, 775, 1643, 3483, 7299, 15170, 31010, 62563, 124221, 243296, 469856, 896491, 1690475, 3155551, 5834871, 10701036, 19479021, 35227889, 63335778, 113286272, 201687929, 357585904, 631574315, 1111614614, 1950096758, 3410420973, 5946337698, 10337420278, 17918573379, 30968896662, 53366449357, 91689380979, 157058043025, 268210414468, 456613323892
Offset: 0

Views

Author

Keywords

Comments

Understanding this sequence is a famous unsolved problem in the theory of partitions.

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Entry revised by Sean A. Irvine and N. J. A. Sloane, Dec 18 2017

A007327 Difference between two partition g.f.s.

Original entry on oeis.org

0, 0, 0, 0, 0, 5, 20, 69, 200, 521, 1294, 3126, 7364, 17309, 40577, 95460, 224971, 531368, 1252664, 2943095, 6870029, 15911618, 36507381, 82930347, 186414619, 414654766, 912766795, 1989007381, 4292038414, 9175624264, 19442250125, 40851448761, 85157787033, 176200110937
Offset: 1

Views

Author

Keywords

References

  • George E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000335(n) - A000334(n). - Sean A. Irvine, Dec 18 2017

Extensions

a(11)-a(23) from Sean A. Irvine, Dec 18 2017
More terms from Amiram Eldar, May 11 2024

A042984 Number of n-dimensional partitions of 6.

Original entry on oeis.org

1, 11, 48, 140, 326, 657, 1197, 2024, 3231, 4927, 7238, 10308, 14300, 19397, 25803, 33744, 43469, 55251, 69388, 86204, 106050, 129305, 156377, 187704, 223755, 265031, 312066, 365428, 425720, 493581, 569687, 654752, 749529, 854811, 971432
Offset: 0

Views

Author

Alford Arnold, Aug 15 1998

Keywords

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.

Crossrefs

Programs

  • GAP
    List([0..40],n->(n+1)*(n+4)*(n^3+40*n^2+61*n+30)/120); # Muniru A Asiru, Feb 17 2019
  • Magma
    [1 + 10*n + 27*Binomial(n,2) + 28*Binomial(n,3) + 11*Binomial(n,4) + Binomial(n,5): n in [0..40]]; // Vincenzo Librandi, Oct 27 2013
    
  • Maple
    a:= n-> 1+10*n+27*binomial(n, 2)+28*binomial(n, 3)
                  +11*binomial(n, 4)+binomial(n, 5):
    seq(a(n), n=0..34);
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,48,140,326,657},40] (* Harvey P. Dale, Jan 27 2013 *)
    CoefficientList[Series[(x^4 -3x^3 -3x^2 +5x +1)/(x-1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 27 2013 *)
  • PARI
    my(x='x+O('x^40)); Vec((x^4-3*x^3-3*x^2+5*x+1)/(x-1)^6) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    ((x^4-3*x^3-3*x^2+5*x+1)/(x-1)^6).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019
    

Formula

a(n) = A008780(n) - binomial(n, 4) - binomial(n, 3).
G.f.: (x^4 - 3*x^3 - 3*x^2 + 5*x + 1)/(x-1)^6. - Colin Barker, Jul 22 2012
a(n) = (n+1)*(n+4)*(n^3 + 40*n^2 + 61*n + 30)/120. - Robert Israel, Jul 06 2016

Extensions

More terms from Erich Friedman

A116672 Triangle read by rows in which the binomial transform of the n-th row gives the Euler transform of the n-th diagonal of Pascal's triangle (A007318).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 7, 1, 1, 10, 27, 29, 12, 1, 1, 14, 57, 96, 72, 21, 1, 1, 21, 117, 277, 319, 176, 38, 1
Offset: 1

Views

Author

Alford Arnold, Feb 22 2006

Keywords

Comments

For example, the Euler transform of 1,3,6,... is 1,1,4,10,26,59,141,... (A000294) differing slightly from A000293 which counts the solid partitions.
The NAME does not reproduce the DATA, COMMENTS, or EXAMPLES. - R. J. Mathar, Jul 19 2017
The binomial transforms of the rows form the rows of A289656. - N. J. A. Sloane, Jul 19 2017

Examples

			Row 6 is 1 10 27 29 12 1 generating 1 11 48 141 ... (A008780) the seventh term in the Euler transforms of 1,1,1,...; 1,2,3,...; 1,3,6,... 1,4,10,... etc.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 6, 11, 7, 1;
1, 10, 27, 29, 12, 1;
1, 14, 57, 96, 72, 21, 1;
1, 21, 117, 277, 319, 176, 38, 1;
...
		

Crossrefs

Cf. A000293, A116673 (row sums), A008778 - A008780, A289656.

A289656 Triangle read by rows: row n gives the first n terms of the binomial transform of the n-th row of A116672.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 5, 13, 26, 1, 7, 24, 59, 120, 1, 11, 48, 141, 331, 672, 1, 15, 86, 310, 855, 1982, 4067, 1, 22, 160, 692, 2214, 5817, 13301, 27428
Offset: 1

Views

Author

N. J. A. Sloane, Jul 19 2017

Keywords

Comments

Rows 4, 5, 6 match the starts of sequences A008778, A008779, A008780.

Examples

			Triangle begins:
[1]
[1, 2]
[1, 3, 6]
[1, 5, 13, 26]
[1, 7, 24, 59, 120]
[1, 11, 48, 141, 331, 672]
[1, 15, 86, 310, 855, 1982, 4067]
[1, 22, 160, 692, 2214, 5817, 13301, 27428]
...
		

Crossrefs

Showing 1-5 of 5 results.