cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A007326 Difference between A000294 and the number of solid partitions of n (A000293).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 8, 19, 40, 83, 176, 365, 775, 1643, 3483, 7299, 15170, 31010, 62563, 124221, 243296, 469856, 896491, 1690475, 3155551, 5834871, 10701036, 19479021, 35227889, 63335778, 113286272, 201687929, 357585904, 631574315, 1111614614, 1950096758, 3410420973, 5946337698, 10337420278, 17918573379, 30968896662, 53366449357, 91689380979, 157058043025, 268210414468, 456613323892
Offset: 0

Views

Author

Keywords

Comments

Understanding this sequence is a famous unsolved problem in the theory of partitions.

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Entry revised by Sean A. Irvine and N. J. A. Sloane, Dec 18 2017

A008780 a(n) = (n-dimensional partitions of 6) + C(n,4) + C(n,3).

Original entry on oeis.org

1, 11, 48, 141, 331, 672, 1232, 2094, 3357, 5137, 7568, 10803, 15015, 20398, 27168, 35564, 45849, 58311, 73264, 91049, 112035, 136620, 165232, 198330, 236405, 279981, 329616, 385903, 449471, 520986, 601152, 690712, 790449, 901187, 1023792, 1159173, 1308283
Offset: 0

Views

Author

Keywords

Comments

These are the conjectured numbers of d-dimensional partitions for n=6, coming from a formula proposed by MacMahon in the general case that turned out to be wrong. Still, here for n=6, MacMahon's formula coincides for d < 3 with the first three terms of A042984. - Michel Marcus, Aug 16 2013
Binomial transform of [1,10,27,29,12,1,0,0,0,...], 6th row of A116672. - R. J. Mathar, Jul 18 2017

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. '76, p. 190.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120); # G. C. Greubel, Sep 11 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+5*x-3*x^2-2*x^3)/(1-x)^6 )); // G. C. Greubel, Sep 11 2019
    
  • Maple
    seq(1+10*n+27*binomial(n,2)+29*binomial(n,3)+12*binomial(n,4)+binomial(n,5), n=0..40);
  • Mathematica
    Table[1+10n+27Binomial[n,2]+29Binomial[n,3]+12Binomial[n,4]+ Binomial[n,5], {n,0,40}] (* Harvey P. Dale, Jul 27 2011 *)
    CoefficientList[Series[(1+5x-3x^2-2x^3)/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 17 2013 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,48,141,331,672},40] (* Harvey P. Dale, Aug 28 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+5*x-3*x^2-2*x^3)/(1-x)^6) \\ G. C. Greubel, Sep 11 2019
    
  • Sage
    [(120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120 for n in (0..40)] # G. C. Greubel, Sep 11 2019
    

Formula

G.f.: (1 + 5*x - 3*x^2 - 2*x^3)/(1-x)^6. - Colin Barker, Sep 05 2012
From G. C. Greubel, Sep 11 2019: (Start)
a(n) = (120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120.
E.g.f.: (120 + 1200*x + 1620*x^2 + 580*x^3 + 60*x^4 + x^5)*exp(x)/120. (End)

Extensions

Description corrected by Alford Arnold, Aug 1998
More terms added by G. C. Greubel, Sep 11 2019

A042984 Number of n-dimensional partitions of 6.

Original entry on oeis.org

1, 11, 48, 140, 326, 657, 1197, 2024, 3231, 4927, 7238, 10308, 14300, 19397, 25803, 33744, 43469, 55251, 69388, 86204, 106050, 129305, 156377, 187704, 223755, 265031, 312066, 365428, 425720, 493581, 569687, 654752, 749529, 854811, 971432
Offset: 0

Views

Author

Alford Arnold, Aug 15 1998

Keywords

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.

Crossrefs

Programs

  • GAP
    List([0..40],n->(n+1)*(n+4)*(n^3+40*n^2+61*n+30)/120); # Muniru A Asiru, Feb 17 2019
  • Magma
    [1 + 10*n + 27*Binomial(n,2) + 28*Binomial(n,3) + 11*Binomial(n,4) + Binomial(n,5): n in [0..40]]; // Vincenzo Librandi, Oct 27 2013
    
  • Maple
    a:= n-> 1+10*n+27*binomial(n, 2)+28*binomial(n, 3)
                  +11*binomial(n, 4)+binomial(n, 5):
    seq(a(n), n=0..34);
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,48,140,326,657},40] (* Harvey P. Dale, Jan 27 2013 *)
    CoefficientList[Series[(x^4 -3x^3 -3x^2 +5x +1)/(x-1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 27 2013 *)
  • PARI
    my(x='x+O('x^40)); Vec((x^4-3*x^3-3*x^2+5*x+1)/(x-1)^6) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    ((x^4-3*x^3-3*x^2+5*x+1)/(x-1)^6).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019
    

Formula

a(n) = A008780(n) - binomial(n, 4) - binomial(n, 3).
G.f.: (x^4 - 3*x^3 - 3*x^2 + 5*x + 1)/(x-1)^6. - Colin Barker, Jul 22 2012
a(n) = (n+1)*(n+4)*(n^3 + 40*n^2 + 61*n + 30)/120. - Robert Israel, Jul 06 2016

Extensions

More terms from Erich Friedman

A007328 Difference between the number of 5-dimensional partitions of n and an approximation derived from binomial(n,4).

Original entry on oeis.org

0, 0, 0, 0, 0, 15, 75, 310, 1060, 3281, 9564, 26719, 72239, 191569, 500797, 1299925, 3362473, 8697198, 22513878, 58352126, 151267141, 391728632, 1011734975, 2602330120, 6657204192, 16920629023, 42697311397, 106912113623, 265560809521, 654270114555
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000391(n) - A000390(n). - Sean A. Irvine, Dec 18 2017

Extensions

a(11)-a(21) from Sean A. Irvine, Dec 18 2017
More terms from Amiram Eldar, May 11 2024

A007329 Unexplained difference between two partition generating functions.

Original entry on oeis.org

0, 0, 0, 0, 0, 35, 210, 1001, 3927, 13971, 46592, 148337, 455609, 1362656, 3989914, 11504669, 32804967, 92877609, 261846522
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000417(n) - A000416(n). - Sean A. Irvine, Dec 18 2017

Extensions

a(11)-a(19) from Sean A. Irvine, Dec 18 2017

A007330 Difference between the number of 7-dimensional partitions of n and an approximation derived from binomial(n,6).

Original entry on oeis.org

0, 0, 0, 0, 0, 70, 490, 2632, 11606, 46375, 173362, 618086, 2123709, 7086864, 23085942, 73761644, 232002909, 720819622, 2218608551, 6782480955
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000428(n) - A000427(n). - Sean A. Irvine, Dec 18 2017

Extensions

a(11)-a(18) from Sean A. Irvine, Dec 18 2017
a(19)-a(20) from Amiram Eldar, May 11 2024
Showing 1-6 of 6 results.