cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A082535 Duplicate of A007326.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 8, 19, 40, 83, 176, 365, 775, 1643, 3483
Offset: 0

Views

Author

Keywords

A000294 Expansion of g.f. Product_{k >= 1} (1 - x^k)^(-k*(k+1)/2).

Original entry on oeis.org

1, 1, 4, 10, 26, 59, 141, 310, 692, 1483, 3162, 6583, 13602, 27613, 55579, 110445, 217554, 424148, 820294, 1572647, 2992892, 5652954, 10605608, 19765082, 36609945, 67405569, 123412204, 224728451, 407119735, 733878402, 1316631730, 2351322765, 4180714647, 7401898452, 13051476707, 22922301583, 40105025130, 69909106888, 121427077241, 210179991927, 362583131144
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n if there are k(k+1)/2 kinds of k (k=1,2,...). E.g., a(3)=10 because we have six kinds of 3, three kinds of 2+1 because there are three kinds of 2 and 1+1+1+1. - Emeric Deutsch, Mar 23 2005
Euler transform of the triangular numbers 1,3,6,10,...
Equals A028377: [1, 1, 3, 9, 19, 46, 100, ...] convolved with the aerated version of A000294: [1, 0, 1, 0, 4, 0, 10, 0, 26, 0, 59, ...]. - Gary W. Adamson, Jun 13 2009
The formula for p3(n) in the article by S. Finch (page 2) is incomplete, terms with n^(1/2) and n^(1/4) are also needed. These terms are in the article by Mustonen and Rajesh (page 2) and agree with my results, but in both articles the multiplicative constant is marked only as C, resp. c3(m). The following is a closed form of this constant: Pi^(1/24) * exp(1/24 - Zeta(3) / (8*Pi^2) + 75*Zeta(3)^3 / (2*Pi^8)) / (A^(1/2) * 2^(157/96) * 15^(13/96)) = A255939 = 0.213595160470..., where A = A074962 is the Glaisher-Kinkelin constant and Zeta(3) = A002117. - Vaclav Kotesovec, Mar 11 2015 [The new version of "Integer Partitions" by S. Finch contains the missing terms, see pages 2 and 5. - Vaclav Kotesovec, May 12 2015]
Number of solid partitions of corner-hook volume n (see arXiv:2009.00592 among links for definition). E.g., a(2) = 1 because there is only one solid partition [[[2]]] with cohook volume 2; a(3) = 4 because we have three solid partitions with two 1's (entry at (1,1,1) contributes 1, another entry at (2,1,1) or (1,2,1) or (1,1,2) contributes 2 to corner-hook volume) and one solid partition with single entry 3 (which contributes 3 to the corner-hook volume). Namely as 3D arrays [[[1],[1]]],[[[1]],[[1]]],[[[1]],[[1]]], [[[3]]]. - Alimzhan Amanov, Jul 13 2021

References

  • R. Chandra, Tables of solid partitions, Proceedings of the Indian National Science Academy, 26 (1960), 134-139.
  • V. S. Nanda, Tables of solid partitions, Proceedings of the Indian National Science Academy, 19 (1953), 313-314.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A278403 (log of o.g.f.).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> n*(n+1)/2): seq(a(n), n=0..30);  # Alois P. Heinz, Sep 08 2008
  • Mathematica
    a[0] = 1; a[n_] := a[n] = 1/(2*n)*Sum[(DivisorSigma[2, k]+DivisorSigma[3, k])*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 05 2014, after Vladeta Jovovic *)
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)/2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 11 2015 *)
  • PARI
    a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^3/k, x*O(x^n))), n)) \\ Joerg Arndt, Apr 16 2010
    
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: binomial(n+1, 2))
    print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020

Formula

a(n) = (1/(2*n))*Sum_{k=1..n} (sigma[2](k)+sigma[3](k))*a(n-k). - Vladeta Jovovic, Sep 17 2002
a(n) ~ Pi^(1/24) * exp(1/24 - Zeta(3) / (8*Pi^2) + 75*Zeta(3)^3 / (2*Pi^8) - 15^(5/4) * Zeta(3)^2 * n^(1/4) / (2^(7/4)*Pi^5) + 15^(1/2) * Zeta(3) * n^(1/2) / (2^(1/2)*Pi^2) + 2^(7/4) * Pi * n^(3/4) / (3*15^(1/4))) / (A^(1/2) * 2^(157/96) * 15^(13/96) * n^(61/96)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Mar 11 2015
G.f.: exp(Sum_{k>=1} (sigma_2(k) + sigma_3(k))*x^k/(2*k)). - Ilya Gutkovskiy, Aug 21 2018

Extensions

More terms from Sascha Kurz, Aug 15 2002

A000293 a(n) = number of solid (i.e., three-dimensional) partitions of n.

Original entry on oeis.org

1, 1, 4, 10, 26, 59, 140, 307, 684, 1464, 3122, 6500, 13426, 27248, 54804, 108802, 214071, 416849, 805124, 1541637, 2930329, 5528733, 10362312, 19295226, 35713454, 65715094, 120256653, 218893580, 396418699, 714399381, 1281403841, 2287986987, 4067428375, 7200210523, 12693890803, 22290727268, 38993410516, 67959010130, 118016656268, 204233654229, 352245710866, 605538866862, 1037668522922, 1772700955975, 3019333854177, 5127694484375, 8683676638832, 14665233966068, 24700752691832, 41495176877972, 69531305679518
Offset: 0

Views

Author

Keywords

Comments

An ordinary partition is a row of numbers in nondecreasing order whose sum is n. Here the numbers are in a three-dimensional pile, nondecreasing in the x-, y- and z-directions.
Finding a g.f. for this sequence is an unsolved problem. At first it was thought that it was given by A000294.
Equals A000041 convolved with A002836: [1, 0, 2, 5, 12, 24, 56, 113, ...] and row sums of the convolution triangle A161564. - Gary W. Adamson, Jun 13 2009

Examples

			Examples for n=2 and n=3.
a(2) = 4: 2; 11 where the first 1 is at the origin and the second 1 is in the x, y or z direction.
a(3) = 10: 3; 21 where the 2 is at the origin and the 1 is on the x, y or z axis; 111 (a row of 3 ones on the x, y or z axes); and three 1's with one 1 at the origin and the other two 1's on two of the three axes.
From _Gus Wiseman_, Jan 22 2019: (Start)
The a(1) = 1 through a(4) = 26 solid partitions, represented as chains of chains of integer partitions:
  ((1))  ((2))       ((3))            ((4))
         ((11))      ((21))           ((22))
         ((1)(1))    ((111))          ((31))
         ((1))((1))  ((2)(1))         ((211))
                     ((11)(1))        ((1111))
                     ((2))((1))       ((2)(2))
                     ((1)(1)(1))      ((3)(1))
                     ((11))((1))      ((21)(1))
                     ((1)(1))((1))    ((11)(11))
                     ((1))((1))((1))  ((111)(1))
                                      ((2))((2))
                                      ((3))((1))
                                      ((2)(1)(1))
                                      ((21))((1))
                                      ((11))((11))
                                      ((11)(1)(1))
                                      ((111))((1))
                                      ((2)(1))((1))
                                      ((1)(1)(1)(1))
                                      ((11)(1))((1))
                                      ((2))((1))((1))
                                      ((1)(1))((1)(1))
                                      ((1)(1)(1))((1))
                                      ((11))((1))((1))
                                      ((1)(1))((1))((1))
                                      ((1))((1))((1))((1))
(End)
		

References

  • P. A. MacMahon, Memoir on the theory of partitions of numbers - Part VI, Phil. Trans. Roal Soc., 211 (1912), 345-373.
  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A000219 (2-dim), A000294, A000334 (4-dim), A000390 (5-dim), A002835, A002836, A005980, A037452 (inverse Euler trans.), A080207, A007326, A000416 (6-dim), A000427 (7-dim), A179855 (8-dim).
Cf. A161564. - Gary W. Adamson, Jun 13 2009

Programs

  • Mathematica
    planePtns[n_]:=Join@@Table[Select[Tuples[IntegerPartitions/@ptn],And@@(GreaterEqual@@@Transpose[PadRight[#]])&],{ptn,IntegerPartitions[n]}];
    solidPtns[n_]:=Join@@Table[Select[Tuples[planePtns/@y],And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)])&],{y,IntegerPartitions[n]}];
    Table[Length[solidPtns[n]],{n,10}] (* Gus Wiseman, Jan 23 2019 *)

Extensions

More terms from the Mustonen and Rajesh article, May 02 2003
a(51)-a(62) found by Suresh Govindarajan and students, Dec 14 2010
a(63)-a(68) found by Suresh Govindarajan and students, Jun 01 2011
a(69)-a(72) found by Suresh Govindarajan and Srivatsan Balakrishnan, Jan 03 2013

A007327 Difference between two partition g.f.s.

Original entry on oeis.org

0, 0, 0, 0, 0, 5, 20, 69, 200, 521, 1294, 3126, 7364, 17309, 40577, 95460, 224971, 531368, 1252664, 2943095, 6870029, 15911618, 36507381, 82930347, 186414619, 414654766, 912766795, 1989007381, 4292038414, 9175624264, 19442250125, 40851448761, 85157787033, 176200110937
Offset: 1

Views

Author

Keywords

References

  • George E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000335(n) - A000334(n). - Sean A. Irvine, Dec 18 2017

Extensions

a(11)-a(23) from Sean A. Irvine, Dec 18 2017
More terms from Amiram Eldar, May 11 2024

A008780 a(n) = (n-dimensional partitions of 6) + C(n,4) + C(n,3).

Original entry on oeis.org

1, 11, 48, 141, 331, 672, 1232, 2094, 3357, 5137, 7568, 10803, 15015, 20398, 27168, 35564, 45849, 58311, 73264, 91049, 112035, 136620, 165232, 198330, 236405, 279981, 329616, 385903, 449471, 520986, 601152, 690712, 790449, 901187, 1023792, 1159173, 1308283
Offset: 0

Views

Author

Keywords

Comments

These are the conjectured numbers of d-dimensional partitions for n=6, coming from a formula proposed by MacMahon in the general case that turned out to be wrong. Still, here for n=6, MacMahon's formula coincides for d < 3 with the first three terms of A042984. - Michel Marcus, Aug 16 2013
Binomial transform of [1,10,27,29,12,1,0,0,0,...], 6th row of A116672. - R. J. Mathar, Jul 18 2017

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. '76, p. 190.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120); # G. C. Greubel, Sep 11 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+5*x-3*x^2-2*x^3)/(1-x)^6 )); // G. C. Greubel, Sep 11 2019
    
  • Maple
    seq(1+10*n+27*binomial(n,2)+29*binomial(n,3)+12*binomial(n,4)+binomial(n,5), n=0..40);
  • Mathematica
    Table[1+10n+27Binomial[n,2]+29Binomial[n,3]+12Binomial[n,4]+ Binomial[n,5], {n,0,40}] (* Harvey P. Dale, Jul 27 2011 *)
    CoefficientList[Series[(1+5x-3x^2-2x^3)/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 17 2013 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,48,141,331,672},40] (* Harvey P. Dale, Aug 28 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+5*x-3*x^2-2*x^3)/(1-x)^6) \\ G. C. Greubel, Sep 11 2019
    
  • Sage
    [(120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120 for n in (0..40)] # G. C. Greubel, Sep 11 2019
    

Formula

G.f.: (1 + 5*x - 3*x^2 - 2*x^3)/(1-x)^6. - Colin Barker, Sep 05 2012
From G. C. Greubel, Sep 11 2019: (Start)
a(n) = (120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120.
E.g.f.: (120 + 1200*x + 1620*x^2 + 580*x^3 + 60*x^4 + x^5)*exp(x)/120. (End)

Extensions

Description corrected by Alford Arnold, Aug 1998
More terms added by G. C. Greubel, Sep 11 2019

A042984 Number of n-dimensional partitions of 6.

Original entry on oeis.org

1, 11, 48, 140, 326, 657, 1197, 2024, 3231, 4927, 7238, 10308, 14300, 19397, 25803, 33744, 43469, 55251, 69388, 86204, 106050, 129305, 156377, 187704, 223755, 265031, 312066, 365428, 425720, 493581, 569687, 654752, 749529, 854811, 971432
Offset: 0

Views

Author

Alford Arnold, Aug 15 1998

Keywords

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.

Crossrefs

Programs

  • GAP
    List([0..40],n->(n+1)*(n+4)*(n^3+40*n^2+61*n+30)/120); # Muniru A Asiru, Feb 17 2019
  • Magma
    [1 + 10*n + 27*Binomial(n,2) + 28*Binomial(n,3) + 11*Binomial(n,4) + Binomial(n,5): n in [0..40]]; // Vincenzo Librandi, Oct 27 2013
    
  • Maple
    a:= n-> 1+10*n+27*binomial(n, 2)+28*binomial(n, 3)
                  +11*binomial(n, 4)+binomial(n, 5):
    seq(a(n), n=0..34);
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,48,140,326,657},40] (* Harvey P. Dale, Jan 27 2013 *)
    CoefficientList[Series[(x^4 -3x^3 -3x^2 +5x +1)/(x-1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 27 2013 *)
  • PARI
    my(x='x+O('x^40)); Vec((x^4-3*x^3-3*x^2+5*x+1)/(x-1)^6) \\ G. C. Greubel, Feb 17 2019
    
  • Sage
    ((x^4-3*x^3-3*x^2+5*x+1)/(x-1)^6).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019
    

Formula

a(n) = A008780(n) - binomial(n, 4) - binomial(n, 3).
G.f.: (x^4 - 3*x^3 - 3*x^2 + 5*x + 1)/(x-1)^6. - Colin Barker, Jul 22 2012
a(n) = (n+1)*(n+4)*(n^3 + 40*n^2 + 61*n + 30)/120. - Robert Israel, Jul 06 2016

Extensions

More terms from Erich Friedman

A007328 Difference between the number of 5-dimensional partitions of n and an approximation derived from binomial(n,4).

Original entry on oeis.org

0, 0, 0, 0, 0, 15, 75, 310, 1060, 3281, 9564, 26719, 72239, 191569, 500797, 1299925, 3362473, 8697198, 22513878, 58352126, 151267141, 391728632, 1011734975, 2602330120, 6657204192, 16920629023, 42697311397, 106912113623, 265560809521, 654270114555
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000391(n) - A000390(n). - Sean A. Irvine, Dec 18 2017

Extensions

a(11)-a(21) from Sean A. Irvine, Dec 18 2017
More terms from Amiram Eldar, May 11 2024

A007329 Unexplained difference between two partition generating functions.

Original entry on oeis.org

0, 0, 0, 0, 0, 35, 210, 1001, 3927, 13971, 46592, 148337, 455609, 1362656, 3989914, 11504669, 32804967, 92877609, 261846522
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000417(n) - A000416(n). - Sean A. Irvine, Dec 18 2017

Extensions

a(11)-a(19) from Sean A. Irvine, Dec 18 2017

A007330 Difference between the number of 7-dimensional partitions of n and an approximation derived from binomial(n,6).

Original entry on oeis.org

0, 0, 0, 0, 0, 70, 490, 2632, 11606, 46375, 173362, 618086, 2123709, 7086864, 23085942, 73761644, 232002909, 720819622, 2218608551, 6782480955
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000428(n) - A000427(n). - Sean A. Irvine, Dec 18 2017

Extensions

a(11)-a(18) from Sean A. Irvine, Dec 18 2017
a(19)-a(20) from Amiram Eldar, May 11 2024

A116673 Row sums of triangle A116672, in which the binomial transform of the n-th row lists the Euler transform of the n-th sequence in A007318 (Pascal's Triangle).

Original entry on oeis.org

1, 2, 4, 10, 26, 80, 262, 950
Offset: 1

Views

Author

Alford Arnold, Feb 22 2006

Keywords

Comments

A116673 is to A096807 as Table A116672 is to Table A096806. The difference between the two tables is of historical interest. (cf. A096751 and A007326).

Examples

			A116672 begins
1; 1,1; 1,2,1; 1,4,4,1; 1,6,11,7,1; 1,10,27,29,12,1; 1,14,57,96,72,21,1; 1,21,117,277,319,176,38,1; . . . so
A116673 begins 1 2 4 10 26 80 262 950 ...
		

Crossrefs

Showing 1-10 of 10 results.