cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A096751 Square table, read by antidiagonals, where T(n,k) equals the number of n-dimensional partitions of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 7, 1, 1, 1, 6, 15, 26, 24, 11, 1, 1, 1, 7, 21, 45, 59, 48, 15, 1, 1, 1, 8, 28, 71, 120, 140, 86, 22, 1, 1, 1, 9, 36, 105, 216, 326, 307, 160, 30, 1, 1, 1, 10, 45, 148, 357, 657, 835, 684, 282, 42, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2004

Keywords

Comments

Main diagonal forms A096752. Antidiagonal sums form A096753. Row with index n lists the row sums of the n-th matrix power of triangle A096651, for n>=0.

Examples

			n-th row lists n-dimensional partitions; table begins with n=0:
  [1,1,1,1,1,1,1,1,1,1,1,1,...],
  [1,1,2,3,5,7,11,15,22,30,42,56,...],
  [1,1,3,6,13,24,48,86,160,282,500,859,...],
  [1,1,4,10,26,59,140,307,684,1464,3122,...],
  [1,1,5,15,45,120,326,835,2145,5345,...],
  [1,1,6,21,71,216,657,1907,5507,15522,...],
  [1,1,7,28,105,357,1197,3857,12300,38430,...],
  [1,1,8,36,148,554,2024,7134,24796,84625,...],
  [1,1,9,45,201,819,3231,12321,46209,170370,...],
  [1,1,10,55,265,1165,4927,20155,80920,...],...
Array begins:
      k=0:  k=1:  k=2:  k=3:  k=4:  k=5:  k=6:  k=7:  k=8:
  n=0:  1     1     1     1     1     1     1     1     1
  n=1:  1     1     2     3     5     7    11    15    22
  n=2:  1     1     3     6    13    24    48    86   160
  n=3:  1     1     4    10    26    59   140   307   684
  n=4:  1     1     5    15    45   120   326   835  2145
  n=5:  1     1     6    21    71   216   657  1907  5507
  n=6:  1     1     7    28   105   357  1197  3857 12300
  n=7:  1     1     8    36   148   554  2024  7134 24796
  n=8:  1     1     9    45   201   819  3231 12321 46209
  n=9:  1     1    10    55   265  1165  4927 20155 80920
		

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. 1976, pp. 189-197.

Crossrefs

Rows: A000012 (n=0), A000041 (n=1), A000219 (n=2), A000293 (n=3), A000334 (n=4), A000390 (n=5), A000416 (n=6), A000427 (n=7), A179855 (n=8).
Columns: A008778 (k=4), A008779 (k=5), A042984 (k=6).
Cf. A096806.
Cf. A042984.

Programs

  • Mathematica
    trans[x_]:=If[x=={},{},Transpose[x]];
    levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]];
    Table[If[sum==k,1,Length[levptns[k,sum-k]]],{sum,0,10},{k,0,sum}] (* Gus Wiseman, Jan 27 2019 *)

Formula

T(0, n)=T(n, 0)=T(n, 1)=1 for n>=0.
Inverse binomial transforms of the columns is given by triangle A096806.

A007326 Difference between A000294 and the number of solid partitions of n (A000293).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 8, 19, 40, 83, 176, 365, 775, 1643, 3483, 7299, 15170, 31010, 62563, 124221, 243296, 469856, 896491, 1690475, 3155551, 5834871, 10701036, 19479021, 35227889, 63335778, 113286272, 201687929, 357585904, 631574315, 1111614614, 1950096758, 3410420973, 5946337698, 10337420278, 17918573379, 30968896662, 53366449357, 91689380979, 157058043025, 268210414468, 456613323892
Offset: 0

Views

Author

Keywords

Comments

Understanding this sequence is a famous unsolved problem in the theory of partitions.

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Entry revised by Sean A. Irvine and N. J. A. Sloane, Dec 18 2017

A007327 Difference between two partition g.f.s.

Original entry on oeis.org

0, 0, 0, 0, 0, 5, 20, 69, 200, 521, 1294, 3126, 7364, 17309, 40577, 95460, 224971, 531368, 1252664, 2943095, 6870029, 15911618, 36507381, 82930347, 186414619, 414654766, 912766795, 1989007381, 4292038414, 9175624264, 19442250125, 40851448761, 85157787033, 176200110937
Offset: 1

Views

Author

Keywords

References

  • George E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000335(n) - A000334(n). - Sean A. Irvine, Dec 18 2017

Extensions

a(11)-a(23) from Sean A. Irvine, Dec 18 2017
More terms from Amiram Eldar, May 11 2024

A008780 a(n) = (n-dimensional partitions of 6) + C(n,4) + C(n,3).

Original entry on oeis.org

1, 11, 48, 141, 331, 672, 1232, 2094, 3357, 5137, 7568, 10803, 15015, 20398, 27168, 35564, 45849, 58311, 73264, 91049, 112035, 136620, 165232, 198330, 236405, 279981, 329616, 385903, 449471, 520986, 601152, 690712, 790449, 901187, 1023792, 1159173, 1308283
Offset: 0

Views

Author

Keywords

Comments

These are the conjectured numbers of d-dimensional partitions for n=6, coming from a formula proposed by MacMahon in the general case that turned out to be wrong. Still, here for n=6, MacMahon's formula coincides for d < 3 with the first three terms of A042984. - Michel Marcus, Aug 16 2013
Binomial transform of [1,10,27,29,12,1,0,0,0,...], 6th row of A116672. - R. J. Mathar, Jul 18 2017

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. '76, p. 190.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120); # G. C. Greubel, Sep 11 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+5*x-3*x^2-2*x^3)/(1-x)^6 )); // G. C. Greubel, Sep 11 2019
    
  • Maple
    seq(1+10*n+27*binomial(n,2)+29*binomial(n,3)+12*binomial(n,4)+binomial(n,5), n=0..40);
  • Mathematica
    Table[1+10n+27Binomial[n,2]+29Binomial[n,3]+12Binomial[n,4]+ Binomial[n,5], {n,0,40}] (* Harvey P. Dale, Jul 27 2011 *)
    CoefficientList[Series[(1+5x-3x^2-2x^3)/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 17 2013 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,48,141,331,672},40] (* Harvey P. Dale, Aug 28 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+5*x-3*x^2-2*x^3)/(1-x)^6) \\ G. C. Greubel, Sep 11 2019
    
  • Sage
    [(120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120 for n in (0..40)] # G. C. Greubel, Sep 11 2019
    

Formula

G.f.: (1 + 5*x - 3*x^2 - 2*x^3)/(1-x)^6. - Colin Barker, Sep 05 2012
From G. C. Greubel, Sep 11 2019: (Start)
a(n) = (120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120.
E.g.f.: (120 + 1200*x + 1620*x^2 + 580*x^3 + 60*x^4 + x^5)*exp(x)/120. (End)

Extensions

Description corrected by Alford Arnold, Aug 1998
More terms added by G. C. Greubel, Sep 11 2019

A096806 Triangle, read by rows, such that the binomial transform of the n-th row lists the m-dimensional partitions of n, for n>=1 and m>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 7, 1, 1, 10, 27, 28, 11, 1, 1, 14, 57, 93, 64, 16, 1, 1, 21, 117, 269, 282, 131, 22, 1, 1, 29, 223, 707, 1062, 766, 244, 29, 1, 1, 41, 417, 1747, 3565, 3681, 1871, 421, 37, 1, 1, 55, 748, 4090, 10999, 15489, 11400, 4152, 683, 46, 1, 1, 76
Offset: 1

Views

Author

Paul D. Hanna, Jul 19 2004

Keywords

Comments

The n-th row equals the inverse binomial transform of n-th column of square array A096751, for n>=1. The zero-dimensional partition of n is taken to be 1 for all n.

Examples

			The number of m-dimensional partitions of 5, for m>=0, is given by the binomial transform of the 5th row:
BINOMIAL([1,6,11,7,1]) = [1,7,24,59,120,216,357,554,819,1165,...] = A008779.
Rows begin:
  [1],
  [1,  1],
  [1,  2,   1],
  [1,  4,   4,    1],
  [1,  6,  11,    7,     1],
  [1, 10,  27,   28,    11,     1],
  [1, 14,  57,   93,    64,    16,      1],
  [1, 21, 117,  269,   282,   131,     22,      1],
  [1, 29, 223,  707,  1062,   766,    244,     29,     1],
  [1, 41, 417, 1747,  3565,  3681,   1871,    421,    37,     1],
  [1, 55, 748, 4090, 10999, 15489,  11400,   4152,   683,    46,    1],
  [1, 76,1326, 9219, 31828, 58975,  59433,  31802,  8483,  1054,   56,   1],
  [1,100,2284,20095, 87490,207735, 276230, 204072, 80664, 16162, 1561,  67, 1],
  [1,134,3898,42707,230737,687665,1173533,1148939,632478,188077,29031,2234,79,1],
  ...
The inverse binomial transform of the diagonals of this triangle begin:
  [1],
  [1, 1,  1],
  [1, 3,  4,   6,  3],
  [1, 5, 16,  29,  49,   45,   15],
  [1, 9, 38, 127, 289,  540,  660,   420, 105],
  [1,13, 90, 397,1384, 3633, 7506, 10920,9765,4725,945],
  [1,20,182,1140,5266,19324,55645,125447,  ? ,  ? , ?  ,62370,10395],
  ...
		

Crossrefs

Cf. A096751, A096807 (row sums), A000065 (column k=1?), A008778 (bin trans 4th row), A042984 (bin trans 6th row)
Cf. A119271.

Formula

T(n, 0)=T(n, n-1)=1, T(n, 1)=A000041(n)-1, T(n, n-2)=(n-1)*(n-2)/2+1, for n>=1.
Showing 1-5 of 5 results.