cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A116673 Row sums of triangle A116672, in which the binomial transform of the n-th row lists the Euler transform of the n-th sequence in A007318 (Pascal's Triangle).

Original entry on oeis.org

1, 2, 4, 10, 26, 80, 262, 950
Offset: 1

Views

Author

Alford Arnold, Feb 22 2006

Keywords

Comments

A116673 is to A096807 as Table A116672 is to Table A096806. The difference between the two tables is of historical interest. (cf. A096751 and A007326).

Examples

			A116672 begins
1; 1,1; 1,2,1; 1,4,4,1; 1,6,11,7,1; 1,10,27,29,12,1; 1,14,57,96,72,21,1; 1,21,117,277,319,176,38,1; . . . so
A116673 begins 1 2 4 10 26 80 262 950 ...
		

Crossrefs

A289656 Triangle read by rows: row n gives the first n terms of the binomial transform of the n-th row of A116672.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 5, 13, 26, 1, 7, 24, 59, 120, 1, 11, 48, 141, 331, 672, 1, 15, 86, 310, 855, 1982, 4067, 1, 22, 160, 692, 2214, 5817, 13301, 27428
Offset: 1

Views

Author

N. J. A. Sloane, Jul 19 2017

Keywords

Comments

Rows 4, 5, 6 match the starts of sequences A008778, A008779, A008780.

Examples

			Triangle begins:
[1]
[1, 2]
[1, 3, 6]
[1, 5, 13, 26]
[1, 7, 24, 59, 120]
[1, 11, 48, 141, 331, 672]
[1, 15, 86, 310, 855, 1982, 4067]
[1, 22, 160, 692, 2214, 5817, 13301, 27428]
...
		

Crossrefs

A008778 a(n) = (n+1)*(n^2 +8*n +6)/6. Number of n-dimensional partitions of 4. Number of terms in 4th derivative of a function composed with itself n times.

Original entry on oeis.org

1, 5, 13, 26, 45, 71, 105, 148, 201, 265, 341, 430, 533, 651, 785, 936, 1105, 1293, 1501, 1730, 1981, 2255, 2553, 2876, 3225, 3601, 4005, 4438, 4901, 5395, 5921, 6480, 7073, 7701, 8365, 9066, 9805, 10583, 11401, 12260, 13161, 14105, 15093, 16126, 17205, 18331
Offset: 0

Views

Author

Keywords

Comments

Let m(i,1)=i; m(1,j)=j; m(i,j)=m(i-1,j)-m(i-1,j-1); then a(n)=m(n+3,3) - Benoit Cloitre, May 08 2002
a(n) = number of (n+6)-bit binary sequences with exactly 6 1's none of which is isolated. - David Callan, Jul 15 2004
If a 2-set Y and 2-set Z, having one element in common, are subsets of an n-set X then a(n-4) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007
Sum of first n triangular numbers plus previous triangular number. - Vladimir Joseph Stephan Orlovsky, Oct 13 2009
a(n) = Sum of first (n+1) triangular numbers plus n-th triangular number (see penultimate formula by Henry Bottomley). - Vladimir Joseph Stephan Orlovsky, Oct 13 2009
For n > 0, a(n-1) is the number of compositions of n+6 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
The binomial transform of [1,4,4,1,0,0,0,...], the 4th row in A116672. - R. J. Mathar, Jul 18 2017

Examples

			G.f. = 1 + 5*x + 13*x^2 + 26*x^3 + 45*x^4 + 71*x^5 + 105*x^6 + 148*x^7 + 201*x^8 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190 eq. (11.4.7).

Crossrefs

Column 1 of triangle A094415.
Row n=4 of A022818.
Cf. A002411, A008779, A005712 (partial sums), A034856 (first diffs).

Programs

  • GAP
    List([0..50], n-> (n+1)*(n^2 +8*n +6)/6); # G. C. Greubel, Sep 11 2019
  • Magma
    [(n+1)*(n^2+8*n+6)/6: n in [0..50]]; // Vincenzo Librandi, May 21 2011
    
  • Maple
    seq(1+4*k+4*binomial(k, 2)+binomial(k, 3), k=0..45);
  • Mathematica
    Table[(n+1)*(n^2+8*n+6)/6, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009, modified by G. C. Greubel, Sep 11 2019 *)
    LinearRecurrence[{4,-6,4,-1}, {1,5,13,26}, 51] (* G. C. Greubel, Sep 11 2019 *)
  • PARI
    Vec((1+x-x^2)/(1-x)^4 + O(x^50)) \\ Altug Alkan, Jan 07 2016
    
  • Sage
    [(n+1)*(n^2 +8*n +6)/6 for n in (0..50)] # G. C. Greubel, Sep 11 2019
    

Formula

a(n) = dot_product(n, n-1, ...2, 1)*(2, 3, ..., n, 1) for n = 2, 3, 4, ... [i.e., a(2) = (2, 1)*(2, 1), a(3) = (3, 2, 1)*(2, 3, 1)]. - Clark Kimberling
a(n) = a(n-1) + A034856(n+1) = A000297(n-1) + 1 = A000217(n) + A000292(n+1) = A000290(n-1) + A000292(n). - Henry Bottomley, Oct 25 2001
a(n) = Sum_{0<=k, l<=n; k+l|n} k*l. - Ralf Stephan, May 06 2005
G.f.: (1+x-x^2)/(1-x)^4. - Colin Barker, Jan 06 2012
a(n) = A000330(n+1) - A000292(n-1). - Bruce J. Nicholson, Jul 05 2018
E.g.f.: (6 +24*x +12*x^2 +x^3)*exp(x)/6. - G. C. Greubel, Sep 11 2019

A008780 a(n) = (n-dimensional partitions of 6) + C(n,4) + C(n,3).

Original entry on oeis.org

1, 11, 48, 141, 331, 672, 1232, 2094, 3357, 5137, 7568, 10803, 15015, 20398, 27168, 35564, 45849, 58311, 73264, 91049, 112035, 136620, 165232, 198330, 236405, 279981, 329616, 385903, 449471, 520986, 601152, 690712, 790449, 901187, 1023792, 1159173, 1308283
Offset: 0

Views

Author

Keywords

Comments

These are the conjectured numbers of d-dimensional partitions for n=6, coming from a formula proposed by MacMahon in the general case that turned out to be wrong. Still, here for n=6, MacMahon's formula coincides for d < 3 with the first three terms of A042984. - Michel Marcus, Aug 16 2013
Binomial transform of [1,10,27,29,12,1,0,0,0,...], 6th row of A116672. - R. J. Mathar, Jul 18 2017

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. '76, p. 190.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120); # G. C. Greubel, Sep 11 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+5*x-3*x^2-2*x^3)/(1-x)^6 )); // G. C. Greubel, Sep 11 2019
    
  • Maple
    seq(1+10*n+27*binomial(n,2)+29*binomial(n,3)+12*binomial(n,4)+binomial(n,5), n=0..40);
  • Mathematica
    Table[1+10n+27Binomial[n,2]+29Binomial[n,3]+12Binomial[n,4]+ Binomial[n,5], {n,0,40}] (* Harvey P. Dale, Jul 27 2011 *)
    CoefficientList[Series[(1+5x-3x^2-2x^3)/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 17 2013 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,48,141,331,672},40] (* Harvey P. Dale, Aug 28 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+5*x-3*x^2-2*x^3)/(1-x)^6) \\ G. C. Greubel, Sep 11 2019
    
  • Sage
    [(120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120 for n in (0..40)] # G. C. Greubel, Sep 11 2019
    

Formula

G.f.: (1 + 5*x - 3*x^2 - 2*x^3)/(1-x)^6. - Colin Barker, Sep 05 2012
From G. C. Greubel, Sep 11 2019: (Start)
a(n) = (120 + 404*n + 490*n^2 + 255*n^3 + 50*n^4 + n^5)/120.
E.g.f.: (120 + 1200*x + 1620*x^2 + 580*x^3 + 60*x^4 + x^5)*exp(x)/120. (End)

Extensions

Description corrected by Alford Arnold, Aug 1998
More terms added by G. C. Greubel, Sep 11 2019

A008779 Number of n-dimensional partitions of 5.

Original entry on oeis.org

1, 7, 24, 59, 120, 216, 357, 554, 819, 1165, 1606, 2157, 2834, 3654, 4635, 5796, 7157, 8739, 10564, 12655, 15036, 17732, 20769, 24174, 27975, 32201, 36882, 42049, 47734, 53970, 60791, 68232, 76329, 85119, 94640, 104931, 116032, 127984, 140829, 154610, 169371
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of (n+8)-bit binary sequences with exactly 8 1's none of which is isolated. - David Callan, Jul 15 2004
For n > 0, a(n) is the number of compositions of n+8 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Binomial transform of [1,6,11,7,1,0,0,0,...], the 5th row of A116672. - R. J. Mathar, Jul 18 2017

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. '76, p. 190.

Crossrefs

Programs

  • GAP
    List([0..45], n-> (n+1)*(n^3 + 21*n^2 + 38*n + 24)/24); # G. C. Greubel, Sep 11 2019
  • Magma
    [(n+1)*(n^3+21*n^2+38*n+24)/24: n in [0..45]]; // Vincenzo Librandi, May 21 2015
    
  • Magma
    I:=[1,7,24,59,120]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..45]]; // Vincenzo Librandi, May 21 2015
    
  • Maple
    seq(1+6*n+11*binomial(n,2)+7*binomial(n,3)+binomial(n,4), n=0..45);
  • Mathematica
    CoefficientList[Series[(1+2*x-x^2-x^3)/(1-x)^5, {x,0,45}], x] (* Vincenzo Librandi, May 21 2015 *)
    LinearRecurrence[{5,-10,10,-5,1}, {1,7,24,59,120}, 46] (* G. C. Greubel, Sep 11 2019 *)
  • PARI
    Vec((-1+x^3+x^2-2*x)/(x-1)^5 + O(x^45)) \\ Altug Alkan, Jan 07 2016
    
  • Sage
    [(n+1)*(n^3 + 21*n^2 + 38*n + 24)/24 for n in (0..45)] # G. C. Greubel, Sep 11 2019
    

Formula

G.f.: (1 +2*x -x^2 -x^3)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = (n+1)*(n^3 + 21*n^2 + 38*n + 24)/24. - M. F. Hasler, Sep 15 2009
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). - Vincenzo Librandi, May 21 2015
E.g.f.: (24 + 144*x + 132*x^2 + 28*x^3 + x^4)*exp(x)/24. - G. C. Greubel, Sep 11 2019

Extensions

More terms from Vincenzo Librandi, May 21 2015
Showing 1-5 of 5 results.