cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A048949 Values of y in solutions to sigma(x^2)=y^3, where x are given by A008850.

Original entry on oeis.org

1, 1729, 10773399, 10773399, 10773399, 10773399, 75413793, 122688111, 140054187, 184652013, 440319243, 438856509, 440319243, 575170869, 718415607, 980379309, 5351287337487
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A008850.

A008847 Numbers k such that sum of divisors of k^2 is a square.

Original entry on oeis.org

1, 9, 20, 180, 1306, 1910, 11754, 17190, 32486, 38423, 47576, 48202, 50920, 51590, 83884, 104855, 132682, 198534, 247863, 292374, 300876, 312374, 313929, 334330, 345807, 376095, 428184, 433818, 458280, 464310, 469623, 498892, 623615, 754956, 768460, 787127, 943695, 985369
Offset: 1

Views

Author

Keywords

Comments

These are the square roots of squares in A006532. - M. F. Hasler, Oct 23 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 10.
  • I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.

Crossrefs

Programs

  • Haskell
    a008847 n = a008847_list !! (n-1)
    a008847_list = filter ((== 1) . a010052 . a000203 . a000290) [1..]
    -- Reinhard Zumkeller, Mar 27 2013
  • Maple
    with(numtheory): readlib(issqr): for i from 1 to 10^5 do if issqr(sigma(i^2)) then print(i); fi; od;
  • Mathematica
    s = {}; Do[ If[IntegerQ[ Sqrt[ DivisorSigma[1, n^2]]], Print[n]; AppendTo[s, n]], {n, 10^6}]; s (* Jean-François Alcover, May 05 2011 *)
    Select[Range[1000000],IntegerQ[Sqrt[DivisorSigma[1,#^2]]]&] (* Harvey P. Dale, Aug 22 2011 *)
  • PARI
    is_A008847(n)=issquare(sigma(n^2)) \\ M. F. Hasler, Oct 23 2010
    

Formula

A163763(n) = sqrt(sigma(A008847(n)^2)). - M. F. Hasler, Oct 16 2010
a(n) = sqrt(A008848(n)). - Zak Seidov, May 01 2016

A008849 Numbers n such that the sum of divisors of n^3 is a square.

Original entry on oeis.org

1, 7, 751530, 4730879, 5260710, 33116153, 37200735, 187062910, 226141311, 259109835, 260405145, 370049418, 522409465, 836308083, 1105725765, 1309440370, 1343713507, 1582989177, 1609505430, 1813768845, 2590345926, 3039492538, 3656866255
Offset: 1

Views

Author

Keywords

Comments

In 1657 Fermat challenged the world to find such numbers. [Dickson, Vol. 1, p. 54]
If n is a term and n is not divisible by 7, then 7*n is a term. - Don Dechman (dondechman_2000(AT)yahoo.com), Mar 26 2008

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 9.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 54.
  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 92.
  • I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): I. Fermat's first challenge, Preprint, 2002.

Crossrefs

Programs

  • Mathematica
    max = 10^11; primes = {5, 7, 11, 13, 17, 19, 23, 31, 41, 43, 47, 83, 89, 191, 193, 239, 307, 443, 463, 499, 557, 701, 743, 1087, 1487, 2309, 3583, 4373, 5087, 5507, 5807, 44179}; subs = Select[ Times @@@ Subsets[primes, 7], # < max &] // Sort; f[e2_, e3_, p_] := If[n = 2^e2*3^e3*p; IntegerQ[ Sqrt[ DivisorSigma[1, n^3]]], Print[{2^e2, 3^e3, p}]; Sow[n]]; r = Reap[ Scan[ ((f[0, 0, #]; f[0, 1, #]; f[0, 3, #]; f[1, 0, #]; f[1, 1, #]; f[1, 3, #]; f[3, 0, #]; f[3, 1, #]; f[3, 3, #])& ), subs]][[2, 1]]; Select[r, # < max &] // Union (* Jean-François Alcover, Sep 07 2012, after Donovan Johnson *)
  • PARI
    is(n)=issquare(sigma(n^3)) \\ Charles R Greathouse IV, Jun 20 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import factorint, integer_nthroot
    A008849_list, n = [], 1
    while n < 10**7:
        fs = factorint(n)
        if integer_nthroot(reduce(mul,((p**(3*fs[p]+1)-1)//(p-1) for p in fs),1),2)[1]:
            A008849_list.append(n)
        n += 1 # Chai Wah Wu, Apr 05 2021

Extensions

David W. Wilson has supplied terms a(4) = 4730879 and beyond and verified completeness up to a(3) = 751530
I. Kaplansky and Will Jagy have verified that there are no other terms below 3.8*10^9
3656866255 added by Don Dechman, Mar 26 2008
Showing 1-3 of 3 results.