cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008851 Congruent to 0 or 1 mod 5.

Original entry on oeis.org

0, 1, 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 35, 36, 40, 41, 45, 46, 50, 51, 55, 56, 60, 61, 65, 66, 70, 71, 75, 76, 80, 81, 85, 86, 90, 91, 95, 96, 100, 101, 105, 106, 110, 111, 115, 116, 120, 121, 125, 126, 130, 131, 135, 136, 140, 141, 145, 146, 150, 151
Offset: 1

Views

Author

Keywords

Comments

Numbers k that have the same last digit as k^2.

References

  • L. E. Dickson, History of the Theory of Numbers, I, p. 459.

Crossrefs

Programs

  • Haskell
    a008851 n = a008851_list !! (n-1)
    a008851_list = [10*n + m | n <- [0..], m <- [0,1,5,6]]
    -- Reinhard Zumkeller, Jul 27 2011
    
  • Magma
    [n: n in [0..200] | n mod 5 in {0, 1}]; // Vincenzo Librandi, Nov 17 2014
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+5 od: seq(a[n], n=0..61); # Zerinvary Lajos, Mar 16 2008
  • Mathematica
    Select[Range[0, 151], MemberQ[{0, 1}, Mod[#, 5]] &] (* T. D. Noe, Mar 31 2013 *)
  • PARI
    a(n) = 5*(n\2)+bitand(n,1); /* Joerg Arndt, Mar 31 2013 */
    
  • PARI
    a(n) = floor((5/3)*floor(3*(n-1)/2)); /* Joerg Arndt, Mar 31 2013 */
    

Formula

a(n) = 5*n - a(n-1) - 9, n >= 2. - Vincenzo Librandi, Nov 18 2010 [Corrected for offset by David Lovler, Oct 10 2022]
G.f.: x^2*(1+4*x) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 07 2011
a(n+1) = Sum_{k>=0} A030308(n,k)*A146523(k). - Philippe Deléham, Oct 17 2011
a(n) = floor((5/3)*floor(3*(n-1)/2)). - Clark Kimberling, Jul 04 2012
a(n) = (10*n - 13 - 3*(-1)^n)/4. - Robert Israel, Nov 17 2014 [Corrected by David Lovler, Sep 21 2022]
E.g.f.: 4 + ((10*x - 13)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 11 2022
Sum_{n>=2} (-1)^n/a(n) = sqrt(1+2/sqrt(5))*Pi/10 + log(phi)/(2*sqrt(5)) + log(5)/4, where phi is the golden ratio (A001622). - Amiram Eldar, Oct 12 2022

Extensions

Offset corrected by Reinhard Zumkeller, Jul 27 2011