cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008854 Numbers that are congruent to {0, 1, 4} mod 5.

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 10, 11, 14, 15, 16, 19, 20, 21, 24, 25, 26, 29, 30, 31, 34, 35, 36, 39, 40, 41, 44, 45, 46, 49, 50, 51, 54, 55, 56, 59, 60, 61, 64, 65, 66, 69, 70, 71, 74, 75, 76, 79, 80, 81, 84, 85, 86, 89, 90, 91, 94, 95, 96, 99, 100, 101, 104, 105, 106, 109
Offset: 1

Views

Author

Keywords

Comments

n^3 and n have the same last digit.
Partial sums of (0, 1, 3, 1, 1, 3, 1, 1, 3, 1, ...). - Gary W. Adamson, Jun 19 2008
Row sum of a triangle where every "triple" contains 1,2,2. - Craig Knecht, Jul 30 2015
Nonnegative m such that floor(k*m^2/5) = k*floor(m^2/5), where k = 2, 3 or 4. - Bruno Berselli, Dec 03 2015

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 459.

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 5 in [0, 1, 4]]; // Wesley Ivan Hurt, Jun 14 2016
    
  • Maple
    for n to 1000 do if n^3 - n mod 10 = 0 then print(n); fi; od;
  • Mathematica
    Select[Range[0, 150], MemberQ[{0, 1, 4}, Mod[#, 5]] &] (* or *) LinearRecurrence[{1, 0, 1, -1}, {0, 1, 4, 5}, 91] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
    CoefficientList[Series[x (1 + 3 x + x^2) / ((1 + x + x^2) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
  • PARI
    concat(0, Vec(x^2*(1+3*x+x^2)/((1+x+x^2)*(x-1)^2) + O(x^100))) \\ Altug Alkan, Dec 03 2015
    
  • PARI
    a(n) = vecsum(divrem(5*n-7,3)); \\ Kevin Ryde, Aug 08 2022
    
  • Python
    def a(n): return sum(divmod(5*n-7, 3))
    print([a(n) for n in range(1, 67)]) # Michael S. Branicky, Aug 08 2022 after Kevin Ryde

Formula

G.f.: x^2*(1+3*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
a(n) = A047217(n+1)-1. - R. J. Mathar, Aug 04 2015
E.g.f: (5/3)*(x-1)*exp(x) + (2/3)*exp(-x/2)*cos(sqrt(3)*x/2) + (2/9)*exp(-x/2)*sin(sqrt(3)*x/2) + 1. - Robert Israel, Aug 04 2015
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (15*n-15+6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k-1, a(3k-1) = 5k-4, a(3k-2) = 5k-5. (End)
a(n) = 5*n/3 - 2*(n mod 3)/3 - 1. - Ammar Khatab, Aug 26 2020
Sum_{n>=2} (-1)^n/a(n) = 3*log(2)/5 - arccoth(3/sqrt(5))/sqrt(5). - Amiram Eldar, Dec 10 2021
From Peter Bala, Aug 04 2022: (Start)
a(n) = a(floor(n/2)) + a(1 + ceiling(n/2)) for n >= 4 with a(1) = 0, a(2) = 1 and a(3) = 4.
a(2*n) = a(n) + a(n+1); a(2*n+1) = a(n) + a(n+2). Cf. A047222 and A042965. (End)