A008884 3x+1 sequence starting at 27.
27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079
Offset: 0
References
- R. K. Guy, Unsolved Problems in Number Theory, E16.
- H.-O. Peitgen et al., Chaos and Fractals, Springer, p. 33.
Links
- T. D. Noe, Table of n, a(n) for n = 0..111
- F. Oort, Prime numbers, 2013, ICCM Notices, Talk at Academia Sinica and National Taiwan University, 17-XII-2012.
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Magma
[ n eq 1 select 27 else IsOdd(Self(n-1)) select 3*Self(n-1)+1 else Self(n-1) div 2: n in [1..70] ]; // Klaus Brockhaus, Dec 25 2010
-
Maple
f := proc(n) option remember; if n = 0 then 27; elif f(n-1) mod 2 = 0 then f(n-1)/2 else 3*f(n-1)+1; fi; end;
-
Mathematica
NestList[If[EvenQ[#],#/2,3#+1]&,27,70] (* Harvey P. Dale, Jun 30 2011 *)
-
PARI
Collatz(n,lim=0)={ my(c=n,e=0,L=List(n)); if(lim==0, e=1; lim=n*10^6); for(i=1,lim, if(c%2==0, c=c/2, c=3*c+1); listput(L,c); if(e&&c==1, break)); return(Vec(L)); } print(Collatz(27)) \\ A008884 (from 27 to the first 1) \\ Anatoly E. Voevudko, Mar 26 2016
Formula
a(0) = 27, a(n) = 3*a(n-1)+1 if a(n-1) is odd, a(n) = a(n-1)/2 if a(n-1) is even. - Vincenzo Librandi, Dec 24 2010; corrected by Klaus Brockhaus, Dec 25 2010
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
Comments