A008963 Initial digit of Fibonacci number F(n).
0, 1, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 6, 9, 1, 2, 4, 6, 1, 1, 2, 4, 7, 1, 1, 3, 5, 8, 1, 2, 3, 5, 9, 1, 2, 3, 6, 1, 1, 2, 4, 7, 1, 1, 2, 4, 7, 1, 2, 3, 5, 8, 1, 2, 3, 5, 9, 1, 2, 4, 6, 1, 1, 2, 4, 7, 1, 1, 3, 4, 8, 1, 2, 3, 5, 8, 1, 2, 3, 6, 9, 1, 2, 4, 6, 1, 1, 2, 4, 7, 1, 1, 3, 5, 8, 1
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- William Webb, Distribution of the first digits of Fibonacci numbers, The Fibonacci Quarterly, Vol. 13, No. 4 (1975), pp. 334-336.
- Wikipedia, Benford's law.
- J. Wlodarski, Fibonacci and Lucas Numbers Tend to Obey Benford's Law, The Fibonacci Quarterly, Vol. 9, No. 1 (1971), pp. 87-88.
- Index entries for sequences related to Benford's law.
Programs
-
Haskell
a008963 = a000030 . a000045 -- Reinhard Zumkeller, Sep 09 2015
-
Maple
F:= combinat[fibonacci]: a:= n-> parse(""||(F(n))[1]): seq(a(n), n=0..100); # Alois P. Heinz, Nov 22 2023
-
Mathematica
Table[IntegerDigits[Fibonacci[n]][[1]], {n, 0, 100}] (* T. D. Noe, Sep 23 2011 *)
-
PARI
vector(10001,n,f=fibonacci(n-1);f\10^(#Str(f)-1))
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{d=1..9} d*log(1+1/d)/log(10) = 3.440236... (A213201). - Amiram Eldar, Jan 12 2023
For n>5, a(n) = floor(10^{alpha*n-beta}), where alpha=log_10(phi), beta=log_10(5)/2, {x}=x-floor(x) denotes the fractional part of x, log_10(phi) = A097348, and phi = (1+sqrt(5))/2 = A001622. - Hans J. H. Tuenter, Aug 20 2025
Comments