cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008999 a(n) = 2*a(n-1) + a(n-4).

Original entry on oeis.org

1, 2, 4, 8, 17, 36, 76, 160, 337, 710, 1496, 3152, 6641, 13992, 29480, 62112, 130865, 275722, 580924, 1223960, 2578785, 5433292, 11447508, 24118976, 50816737, 107066766, 225581040, 475281056, 1001378849
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008998.

Programs

  • GAP
    a:=[1,2,4,8];; for n in [5..40] do a[n]:=2*a[n-1]+a[n-4]; od; a; # G. C. Greubel, Jun 12 2019
  • Magma
    I:=[1, 2, 4, 8]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, May 09 2012
    
  • Maple
    A008999 := proc(n) option remember; if n <= 3 then 2^n else 2*A008999(n-1)+A008999(n-4); fi; end;
  • Mathematica
    LinearRecurrence[{2,0,0,1},{1,2,4,8},40] (* Harvey P. Dale, May 09 2012 *)
    CoefficientList[Series[1/(1-2x-x^4),{x,0,40}],x] (* Vincenzo Librandi, May 09 2012 *)
  • Maxima
    a(n):=sum(sum(binomial(n-m+(-3)*j,j)*binomial(n-3*j,m),j,0,(n-m)/3),m,0,n); /* Vladimir Kruchinin, May 23 2011 */
    
  • PARI
    my(x='x+O('x^40)); Vec(1/(1-2*x-x^4)) \\ G. C. Greubel, Jun 12 2019
    
  • Sage
    (1/(1-2*x-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 12 2019
    

Formula

G.f.: 1/(1-2*x-x^4). - Philippe Deléham, Dec 02 2006
a(n) = Sum_{m=0..n} Sum_{j=0..(n-m)/3} binomial(n-m+(-3)*j,j)*binomial(n-3*j,m). - Vladimir Kruchinin, May 23 2011
O.g.f.: exp( Sum {n>=1} ( (1 + sqrt(1 + x^2))^n + (1 - sqrt(1 + x^2))^n ) * x^n/n ). Cf. A008998. - Peter Bala, Dec 22 2014