A009194 a(n) = gcd(n, sigma(n)).
1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 28, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- P. Pollack, On the greatest common divisor of a number and its sum of divisors, Michigan Math. J. Volume 60, Issue 1 (2011), 199-214.
Crossrefs
Programs
-
Haskell
a009194 n = gcd (a000203 n) n -- Reinhard Zumkeller, Mar 23 2013
-
Mathematica
Table[GCD[n,DivisorSigma[1,n]],{n,110}] (* Harvey P. Dale, Aug 23 2015 *)
-
PARI
a(n) = gcd(n, sigma(n)); \\ Michel Marcus, Oct 23 2013
Formula
a(n) = n/A017666(n). - Antti Karttunen, May 22 2017
Comments