cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A305407 Expansion of e.g.f. 1/(1 + log(1 - x)*exp(x)).

Original entry on oeis.org

1, 1, 5, 32, 274, 2939, 37833, 568210, 9753280, 188342949, 4041170695, 95380234366, 2455830637412, 68501591450447, 2057726452045145, 66227424015265178, 2273614433910697920, 82932491842062712873, 3202994529476330549163, 130577628147690206429038, 5603479009890212632226756
Offset: 0

Views

Author

Ilya Gutkovskiy, May 31 2018

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 32*x^3/3! + 274*x^4/4! + 2939*x^5/5! + 37833*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(1/(1+log(1-x)*exp(x)),x=0,21): seq(n!*coeff(a,x,n),n=0..20); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 + Log[1 - x] Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[HypergeometricPFQ[{1, 1, 1 - k}, {2}, -1] a[n - k]/(k - 1)!, {k, 1, n}]; Table[n! a[n], {n, 0, 20}]

Formula

a(n) ~ n! / ((1 + exp(r)/r) * (1 - exp(-r))^(n+1)), where r = 0.62747017959751658496114808922921433658821962606026068561095... is the root of the equation r*exp(1 - exp(-r)) = 1. - Vaclav Kotesovec, Mar 26 2019
a(0) = 1; a(n) = Sum_{k=1..n} A002104(k) * binomial(n,k) * a(n-k). - Seiichi Manyama, May 04 2022

A345454 E.g.f.: log(1 - log(1 - x) * exp(x)).

Original entry on oeis.org

0, 1, 2, 1, -5, 3, 141, 348, -1938, 3013, 274327, 1583338, -4613476, 41135339, 3201505997, 33153080054, 49123558416, 2360520208825, 133442956587099, 2109709010976874, 14751973018988252, 338170133891984663, 15120630911878380457, 324654726628159335686
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 - Log[1 - x] Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    A002104[n_] := A002104[n] = n! Sum[1/((n - k) k!), {k, 0, n - 1}]; a[0] = 0; a[n_] := a[n] = A002104[n] - (1/n) Sum[Binomial[n, k] A002104[n - k] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
  • PARI
    my(x='x+O('x^25)); concat(0, Vec(serlaplace(log(1 - log(1 - x) * exp(x))))) \\ Michel Marcus, Jul 19 2021

Formula

a(0) = 0; a(n) = A002104(n) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * A002104(n-k) * k * a(k).

A346427 E.g.f.: -log(1 - log(1 + x) * exp(x)).

Original entry on oeis.org

0, 1, 2, 7, 29, 183, 1319, 12122, 124802, 1508581, 20150509, 302637564, 4960500764, 89164162579, 1730245993111, 36241995276276, 812108432244304, 19430625834864633, 493622198791114665, 13283773364613034324, 377224137563670860492, 11278211794764786428831
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[-Log[1 - Log[1 + x] Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    A002741[n_] := A002741[n] = n! Sum[(-1)^k/((n - k) k!), {k, 0, n - 1}]; a[0] = 0; a[n_] := a[n] = -(-1)^n A002741[n] - (1/n) Sum[(-1)^(n - k) Binomial[n, k] A002741[n - k] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 21}]
  • PARI
    my(x='x+O('x^25)); concat(0, Vec(serlaplace(-log(1 - log(1+x) * exp(x))))) \\ Michel Marcus, Jul 19 2021

Formula

a(0) = 0; a(n) = -(-1)^n * A002741(n) - (1/n) * Sum_{k=1..n-1} (-1)^(n-k) * binomial(n,k) * A002741(n-k) * k * a(k).
Showing 1-3 of 3 results.