cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A003704 Expansion of log(1+sinh(x)).

Original entry on oeis.org

0, 1, -1, 3, -10, 45, -256, 1743, -13840, 125625, -1282816, 14554683, -181649920, 2473184805, -36478744576, 579439207623, -9861412096000, 179018972217585, -3452931391553536, 70518070842040563, -1520176422094766080
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{nn = 201}, CoefficientList[Series[Log[1 + Sinh[x]], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Apr 11 2014 *)
  • Maxima
    a(n):=sum(sum((-1)^(n+i-1)*(k-2*i)^n*binomial(k,i),i,0,k)/(k*2^k),k,1,n); /* Vladimir Kruchinin, Apr 20 2011 */

Formula

a(n) = sum(k=1..n, sum(i=0..k, (-1)^(n+i-1)*(k-2*i)^n * binomial(k,i)) /(k*2^k)). [Vladimir Kruchinin, Apr 20 2011]
a(n) ~ (-1)^(n+1) * (n-1)! / (log(1+sqrt(2)))^n. - Vaclav Kotesovec, Feb 16 2015

Extensions

Mathematica code replaced by Vincenzo Librandi, Apr 11 2014

A024293 Expansion of e.g.f. log(1+sin(x)^2)/2 (even-indexed coefficients).

Original entry on oeis.org

0, 1, -10, 256, -13840, 1282816, -181649920, 36478744576, -9861412096000, 3452931391553536, -1520176422094766080, 821908023102140317696, -535369559186849435484160, 413508899951810581475885056, -373681769282729298809313034240, 390605070751731814007608616943616
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A009344.

Programs

  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Log[1+Sin[x]^2]/2,{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, May 21 2014 *)

Extensions

Extended with signs Mar 1997
Prior Mathematica program replaced by Harvey P. Dale, May 21 2014
Showing 1-2 of 2 results.