A202139
Expansion of e.g.f. log(1/(1-artanh(x))).
Original entry on oeis.org
0, 1, 1, 4, 14, 88, 544, 4688, 41712, 459520, 5333376, 71876352, 1027670016, 16428530688, 278818065408, 5167215464448, 101437811718144, 2140879726411776, 47698275298050048, 1130276555155243008, 28167446673847812096, 740796870212763254784
Offset: 0
-
With[{nn=30},CoefficientList[Series[Log[1/(1-ArcTanh[x])],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 10 2022 *)
-
a(n):=n!*sum(((m-1)!*sum((stirling1(k+m,m)*2^k*binomial(n-1,k+m-1))/(k+m)!,k,0,n-m)),m,1,n);
-
a_vector(n) = my(v=vector(n+1)); v[1]=0; for(i=1, n, v[i+1]=(i%2)*(i-1)!+sum(j=1, i\2, (2*j-2)!*binomial(i-1, 2*j-1)*v[i-2*j+2])); v; \\ Seiichi Manyama, Apr 30 2022
A296435
Expansion of e.g.f. log(1 + arcsinh(x)).
Original entry on oeis.org
0, 1, -1, 1, -2, 13, -64, 173, -720, 12409, -114816, 370137, -1491456, 88556037, -1263184896, 2668274373, 21448022016, 2491377242481, -50233550831616, -34526890553679, 5153298175033344, 202383113207336829, -5453228045913292800, -25792743610973373219, 1393299559788718325760
Offset: 0
E.g.f.: A(x) = x/1! - x^2/2! + x^3/3! - 2*x^4/4! + 13*x^5/5! - 64*x^6/6! + ...
-
S:= series(ln(1+arcsinh(x)),x,51):
seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Dec 12 2017
-
nmax = 24; CoefficientList[Series[Log[1 + ArcSinh[x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[Log[1 + Log[x + Sqrt[1 + x^2]]], {x, 0, nmax}], x] Range[0, nmax]!
-
Vecrev(Pol(serlaplace(log(1 + asinh(x + O(x^30)))))) \\ Andrew Howroyd, Dec 12 2017
A354056
Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + sinh(x).
Original entry on oeis.org
1, -2, 1, -4, 21, -196, 1023, -5440, 65145, -1237456, 10925883, -69882880, 1994183205, -39099282496, 372390766023, -6270496768000, 158096182329585, -3268815510804736, 64115697136312563, -1009052458754375680, 27389518837925527965, -924645800211698308096, 19391677044464348893503
Offset: 1
-
nmax = 23; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + Sinh[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
A012494
Expansion of e.g.f. arctan(sin(x)) (odd powers only).
Original entry on oeis.org
1, -3, 45, -1743, 125625, -14554683, 2473184805, -579439207623, 179018972217585, -70518070842040563, 34495620120141463965, -20515677772241956573503, 14578232896601243652363945, -12198268199871431840616166443, 11871344562637111570703016357525
Offset: 0
Patrick Demichel (patrick.demichel(AT)hp.com)
-
a:= n-> (t-> t!*coeff(series(arctan(sin(x)), x, t+1), x, t))(2*n+1):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 16 2018
-
Drop[ Range[0, 25]! CoefficientList[ Series[ ArcTan[ Sin[x]], {x, 0, 25}], x], {1, 25, 2}] (* Or *)
f[n_] := n!Sum[(1 + (-1)^(n - 2k + 1))2^(1 - 2k)Sum[(-1)^((n + 1)/2 - j)Binomial[2k - 1, j]((2j - 2k + 1)^n/n!)/(2k - 1), {j, 0, (2k - 1)/2}], {k, Ceiling[n/2]}]; Table[ f[n], {n, 1, 25, 2}] (* Robert G. Wilson v *)
-
a(n):=n!*sum((1+(-1)^(n-2*k+1))*2^(1-2*k)*sum((-1)^((n+1)/2-i)*binomial(2*k-1,i)*(2*i-2*k+1)^n/n!,i,0,(2*k-1)/2)/(2*k-1),k,1,ceiling((n)/2)); /* Vladimir Kruchinin, Feb 25 2011 */
-
a(n):=sum(sum((2*i-2*k-1)^(2*n+1)*binomial(2*k+1,i)*(-1)^(n-i+1),i,0,k)/(4^k*(2*k+1)),k,0,n); /* Vladimir Kruchinin, Feb 04 2012 */
A331608
E.g.f.: exp(1 / (1 - sinh(x)) - 1).
Original entry on oeis.org
1, 1, 3, 14, 85, 632, 5559, 56352, 645929, 8252352, 116189291, 1786361216, 29764770941, 534082233856, 10264484355103, 210312181051392, 4575364233983057, 105310034714202112, 2556360647841415379, 65261358332774277120, 1747713179543456515749
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[1/(1 - Sinh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
A006154[n_] := Sum[Sum[(-1)^j (k - 2 j)^n Binomial[k, j]/2^k, {j, 0, k}], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A006154[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A274805
The logarithmic transform of sigma(n).
Original entry on oeis.org
1, 2, -3, -6, 45, 11, -1372, 4298, 59244, -573463, -2432023, 75984243, -136498141, -10881169822, 100704750342, 1514280063802, -36086469752977, -102642110690866, 11883894518252419, -77863424962770751, -3705485804176583500, 71306510264347489177
Offset: 1
Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = 1*x(1)
a(2) = 1*x(2) - x(1)^2
a(3) = 1*x(3) - 3*x(1)*x(2) + 2*x(1)^3
a(4) = 1*x(4) - 4*x(1)*x(3) - 3*x(2)^2 + 12*x(1)^2*x(2) - 6*x(1)^4
a(5) = 1*x(5) - 5*x(1)*x(4) - 10*x(2)*x(3) + 20*x(1)^2*x(3) + 30*x(1)*x(2)^2 - 60*x(1)^3*x(2) + 24*x(1)^5
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 1..451
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Logarithmic Transform.
Cf.
A112005,
A007553,
A062740,
A007447,
A062738,
A033464,
A116652,
A002031,
A003704,
A003707,
A155585,
A000142,
A226968.
-
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n: end: seq(a(n), n=1..nmax); # End first LOG program.
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: t1 := log(1 + add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second LOG program.
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: f := series(exp(add(r(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): r(1):= b(1): for n from 2 to nmax+1 do r(n) := solve(d(n)-b(n), r(n)): a(n):=r(n): od: seq(a(n), n=1..nmax); # End third LOG program.
-
a[1] = 1; a[n_] := a[n] = DivisorSigma[1, n] - Sum[k*Binomial[n, k] * DivisorSigma[1, n-k]*a[k], {k, 1, n-1}]/n; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 27 2017 *)
-
N=33; x='x+O('x^N); Vec(serlaplace(log(1+sum(n=1,N,sigma(n)*x^n/n!)))) \\ Joerg Arndt, Feb 27 2017
A346974
Expansion of e.g.f. log( 1 + (exp(x) - 1)^2 / 2 ).
Original entry on oeis.org
1, 3, 4, -15, -134, -357, 2374, 33645, 133186, -1288617, -24887906, -130115895, 1666879306, 40612637523, 262868197414, -4221449488635, -123802488449774, -952293015617937, 18497401668708334, 632675912865355425, 5622243546094977946, -128799294291220310997
Offset: 2
-
nmax = 23; CoefficientList[Series[Log[1 + (Exp[x] - 1)^2/2], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
a[n_] := a[n] = StirlingS2[n, 2] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 2, 23}]
A331978
E.g.f.: -log(2 - cosh(x)) (even powers only).
Original entry on oeis.org
0, 1, 4, 46, 1114, 46246, 2933074, 263817646, 31943268634, 5009616448246, 987840438629794, 239217148602642046, 69790939492563608554, 24143849395162438623046, 9772368696995766705116914, 4575221153658910691872135246, 2453303387149157947685779986874
Offset: 0
-
ptan := proc(n) option remember;
if irem(n, 2) = 0 then 0 else
add(`if`(k=0, 1, binomial(n, k)*ptan(n - k)), k = 0..n-1, 2) fi end:
A331978 := n -> ptan(2*n - 1):
seq(A331978(n), n = 0..16); # Peter Luschny, Jun 06 2022
-
nmax = 16; Table[(CoefficientList[Series[-Log[2 - Cosh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A346390
Expansion of e.g.f. -log( 1 - (exp(x) - 1)^3 / 3! ).
Original entry on oeis.org
1, 6, 25, 100, 511, 3626, 30045, 262800, 2470171, 25889446, 302003065, 3821936300, 51672723831, 745789322466, 11505096936085, 189023074558600, 3288243760145491, 60319276499454686, 1164282909466221105, 23603464830964817700, 501435697062735519151
Offset: 3
-
nmax = 23; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^3/3!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
a[n_] := a[n] = StirlingS2[n, 3] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 3, 23}]
-
my(x='x+O('x^25)); Vec(serlaplace(-log(1-(exp(x)-1)^3/3!))) \\ Michel Marcus, Aug 09 2021
A346954
Expansion of e.g.f. -log( 1 - (exp(x) - 1)^4 / 4! ).
Original entry on oeis.org
1, 10, 65, 350, 1736, 9030, 60355, 561550, 6188996, 69919850, 781211795, 8854058850, 106994019406, 1433756147470, 21287253921635, 339206526695750, 5630710652048216, 96341917117951890, 1708973354556320875, 31787279786739738250, 623964823224788294426
Offset: 4
-
nmax = 24; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
a[n_] := a[n] = StirlingS2[n, 4] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 24}]
Showing 1-10 of 12 results.
Comments