cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A202139 Expansion of e.g.f. log(1/(1-artanh(x))).

Original entry on oeis.org

0, 1, 1, 4, 14, 88, 544, 4688, 41712, 459520, 5333376, 71876352, 1027670016, 16428530688, 278818065408, 5167215464448, 101437811718144, 2140879726411776, 47698275298050048, 1130276555155243008, 28167446673847812096, 740796870212763254784
Offset: 0

Views

Author

Vladimir Kruchinin, Dec 12 2011

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Log[1/(1-ArcTanh[x])],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 10 2022 *)
  • Maxima
    a(n):=n!*sum(((m-1)!*sum((stirling1(k+m,m)*2^k*binomial(n-1,k+m-1))/(k+m)!,k,0,n-m)),m,1,n);
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=0; for(i=1, n, v[i+1]=(i%2)*(i-1)!+sum(j=1, i\2, (2*j-2)!*binomial(i-1, 2*j-1)*v[i-2*j+2])); v; \\ Seiichi Manyama, Apr 30 2022

Formula

a(n) = n! * Sum_{m=1..n} (m-1)! * Sum_{k=0..n-m} Stirling1(k+m,m) * 2^k * binomial(n-1,k+m-1)/(k+m)!.
E.g.f.: log(2) - log(2 + log((1-x)/(1+x))). - Arkadiusz Wesolowski, Feb 19 2013
a(n) ~ n! * ((exp(2)+1)/(exp(2)-1))^n/n. - Vaclav Kotesovec, Jun 13 2013
a(0) = 0; a(n) = (n mod 2) * (n-1)! + Sum_{k=1..floor(n/2)} (2*k-2)! * binomial(n-1,2*k-1) * a(n-2*k+1). - Seiichi Manyama, Apr 30 2022

Extensions

Zero prepended by Harvey P. Dale, Sep 10 2022

A296435 Expansion of e.g.f. log(1 + arcsinh(x)).

Original entry on oeis.org

0, 1, -1, 1, -2, 13, -64, 173, -720, 12409, -114816, 370137, -1491456, 88556037, -1263184896, 2668274373, 21448022016, 2491377242481, -50233550831616, -34526890553679, 5153298175033344, 202383113207336829, -5453228045913292800, -25792743610973373219, 1393299559788718325760
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 12 2017

Keywords

Examples

			E.g.f.: A(x) = x/1! - x^2/2! + x^3/3! - 2*x^4/4! + 13*x^5/5! - 64*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    S:= series(ln(1+arcsinh(x)),x,51):
    seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Dec 12 2017
  • Mathematica
    nmax = 24; CoefficientList[Series[Log[1 + ArcSinh[x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 24; CoefficientList[Series[Log[1 + Log[x + Sqrt[1 + x^2]]], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    Vecrev(Pol(serlaplace(log(1 + asinh(x + O(x^30)))))) \\ Andrew Howroyd, Dec 12 2017

Formula

E.g.f.: log(1 + log(x + sqrt(1 + x^2))).
a(n) ~ 4*(Pi*cos(Pi*n/2) + 2*sin(Pi*n/2)) * n^(n-1) / ((4 + Pi^2) * exp(n)). - Vaclav Kotesovec, Dec 21 2017

A354056 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + sinh(x).

Original entry on oeis.org

1, -2, 1, -4, 21, -196, 1023, -5440, 65145, -1237456, 10925883, -69882880, 1994183205, -39099282496, 372390766023, -6270496768000, 158096182329585, -3268815510804736, 64115697136312563, -1009052458754375680, 27389518837925527965, -924645800211698308096, 19391677044464348893503
Offset: 1

Views

Author

Ilya Gutkovskiy, May 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + Sinh[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest

Formula

E.g.f.: Sum_{k>=1} mu(k) * log(1 + sinh(x^k)) / k.

A012494 Expansion of e.g.f. arctan(sin(x)) (odd powers only).

Original entry on oeis.org

1, -3, 45, -1743, 125625, -14554683, 2473184805, -579439207623, 179018972217585, -70518070842040563, 34495620120141463965, -20515677772241956573503, 14578232896601243652363945, -12198268199871431840616166443, 11871344562637111570703016357525
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Comments

arctan(sin(x)) = x - 3*x^3/3! + 45*x^5/5! - 1743*x^7/7! + 125625*x^9/9! + ....
Absolute values are coefficients in expansion of
arctanh(arcsinh(x)) = x + 3*x^3/3! + 45*x^5/5! + 1743*x^7/7! + ....
arccot(sin(x)) = Pi/2 - x + 3*x^3/3! - 45*x^5/5! + 1743*x^7/7! - ....

Crossrefs

Bisection of A003704, A013208.
Cf. other sequences with a g.f. of the form cos(x)/(1 - k*sin^2(x)): A000364 (k=1), A001209 (k=1/2), A000281 (k=2), A156134 (k=3), A002437 (k=4).

Programs

  • Maple
    a:= n-> (t-> t!*coeff(series(arctan(sin(x)), x, t+1), x, t))(2*n+1):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 16 2018
  • Mathematica
    Drop[ Range[0, 25]! CoefficientList[ Series[ ArcTan[ Sin[x]], {x, 0, 25}], x], {1, 25, 2}] (* Or *)
    f[n_] := n!Sum[(1 + (-1)^(n - 2k + 1))2^(1 - 2k)Sum[(-1)^((n + 1)/2 - j)Binomial[2k - 1, j]((2j - 2k + 1)^n/n!)/(2k - 1), {j, 0, (2k - 1)/2}], {k, Ceiling[n/2]}]; Table[ f[n], {n, 1, 25, 2}] (* Robert G. Wilson v *)
  • Maxima
    a(n):=n!*sum((1+(-1)^(n-2*k+1))*2^(1-2*k)*sum((-1)^((n+1)/2-i)*binomial(2*k-1,i)*(2*i-2*k+1)^n/n!,i,0,(2*k-1)/2)/(2*k-1),k,1,ceiling((n)/2)); /* Vladimir Kruchinin, Feb 25 2011 */
    
  • Maxima
    a(n):=sum(sum((2*i-2*k-1)^(2*n+1)*binomial(2*k+1,i)*(-1)^(n-i+1),i,0,k)/(4^k*(2*k+1)),k,0,n); /* Vladimir Kruchinin, Feb 04 2012 */

Formula

a(n) = n!*sum(k=1..ceiling(n/2), (1+(-1)^(n-2*k+1))*2^(1-2*k)*sum(i=0..(2*k-1)/2, (-1)^((n+1)/2-i)*binomial(2*k-1,i)*(2*i-2*k+1)^n/n!)/(2*k-1)), n>0. Vladimir Kruchinin, Feb 25 2011
G.f.: cos(x) /(1 + sin^2(x)) = 1 - 3*x^2/2! + 45*x^4/4! - ... . - Peter Bala, Feb 06 2017
a(n) ~ (-1)^n * (2*n)! / (log(1+sqrt(2)))^(2*n+1). - Vaclav Kotesovec, Aug 17 2018

A331608 E.g.f.: exp(1 / (1 - sinh(x)) - 1).

Original entry on oeis.org

1, 1, 3, 14, 85, 632, 5559, 56352, 645929, 8252352, 116189291, 1786361216, 29764770941, 534082233856, 10264484355103, 210312181051392, 4575364233983057, 105310034714202112, 2556360647841415379, 65261358332774277120, 1747713179543456515749
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[1/(1 - Sinh[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    A006154[n_] := Sum[Sum[(-1)^j (k - 2 j)^n Binomial[k, j]/2^k, {j, 0, k}], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A006154[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A006154(k) * a(n-k).
a(n) ~ exp(1/(2^(3/2) * log(1 + sqrt(2))) - 3/4 + 2^(3/4) * sqrt(n) / sqrt(log(1 + sqrt(2))) - n) * n^(n - 1/4) / (2^(5/8) * log(1 + sqrt(2))^(n + 1/4)). - Vaclav Kotesovec, Jan 27 2020

A274805 The logarithmic transform of sigma(n).

Original entry on oeis.org

1, 2, -3, -6, 45, 11, -1372, 4298, 59244, -573463, -2432023, 75984243, -136498141, -10881169822, 100704750342, 1514280063802, -36086469752977, -102642110690866, 11883894518252419, -77863424962770751, -3705485804176583500, 71306510264347489177
Offset: 1

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The logarithmic transform [LOG] transforms an input sequence b(n) into the output sequence a(n). The LOG transform is the inverse of the exponential transform [EXP], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell’s formula. For information about the EXP transform see A274804. The logarithmic transform is related to the inverse multinomial transform, see A274844 and the first formula.
The definition of the LOG transform, see the second formula, shows that n >= 1. To preserve the identity EXP[LOG[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the LOG transform, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the cumulant expansion numbers A127671 appear.
We observe that the logarithmic transform leaves the value of a(0) undefined.
The Maple programs can be used to generate the logarithmic transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A001187 and the first formula. The second program uses the definition of the logarithmic transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the logarithmic transform, see A274804.

Examples

			Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = 1*x(1)
a(2) = 1*x(2) - x(1)^2
a(3) = 1*x(3) - 3*x(1)*x(2) + 2*x(1)^3
a(4) = 1*x(4) - 4*x(1)*x(3) - 3*x(2)^2 + 12*x(1)^2*x(2) - 6*x(1)^4
a(5) = 1*x(5) - 5*x(1)*x(4) - 10*x(2)*x(3) + 20*x(1)^2*x(3) + 30*x(1)*x(2)^2 - 60*x(1)^3*x(2) + 24*x(1)^5
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
  • Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Some LOG transform pairs are, n >= 1: A006125(n-1) and A033678(n); A006125(n) and A001187(n); A006125(n+1) and A062740(n); A000045(n) and A112005(n); A000045(n+1) and A007553(n); A000040(n) and A007447(n); A000051(n) and (-1)*A263968(n-1); A002416(n) and A062738(n); A000290(n) and A033464(n-1); A029725(n-1) and A116652(n-1); A052332(n) and A002031(n+1); A027641(n)/A027642(n) and (-1)*A060054(n+1)/(A075180(n-1).

Programs

  • Maple
    nmax:=22: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n: end: seq(a(n), n=1..nmax); # End first LOG program.
    nmax:=22: with(numtheory): b := proc(n): sigma(n) end: t1 := log(1 + add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second LOG program.
    nmax:=22: with(numtheory): b := proc(n): sigma(n) end: f := series(exp(add(r(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): r(1):= b(1): for n from 2 to nmax+1 do r(n) := solve(d(n)-b(n), r(n)): a(n):=r(n): od: seq(a(n), n=1..nmax); # End third LOG program.
  • Mathematica
    a[1] = 1; a[n_] := a[n] = DivisorSigma[1, n] - Sum[k*Binomial[n, k] * DivisorSigma[1, n-k]*a[k], {k, 1, n-1}]/n; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 27 2017 *)
  • PARI
    N=33; x='x+O('x^N); Vec(serlaplace(log(1+sum(n=1,N,sigma(n)*x^n/n!)))) \\ Joerg Arndt, Feb 27 2017

Formula

a(n) = b(n) - Sum_{k = 1..n-1}((k*binomial(n, k)*b(n-k)*a(k))/n), n >= 1, with b(n) = A000203(n) = sigma(n).
E.g.f. log(1+ Sum_{n >= 1}(b(n)*x^n/n!)), n >= 1, with b(n) = A000203(n) = sigma(n).

A346974 Expansion of e.g.f. log( 1 + (exp(x) - 1)^2 / 2 ).

Original entry on oeis.org

1, 3, 4, -15, -134, -357, 2374, 33645, 133186, -1288617, -24887906, -130115895, 1666879306, 40612637523, 262868197414, -4221449488635, -123802488449774, -952293015617937, 18497401668708334, 632675912865355425, 5622243546094977946, -128799294291220310997
Offset: 2

Views

Author

Ilya Gutkovskiy, Aug 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 + (Exp[x] - 1)^2/2], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
    a[n_] := a[n] = StirlingS2[n, 2] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 2, 23}]

Formula

a(n) = Stirling2(n,2) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,2) * k * a(k).
a(n) ~ -n! * 2^(n+1) * cos(n*arctan(2*arctan(sqrt(2))/log(3))) / (n * (4*arctan(sqrt(2))^2 + log(3)^2)^(n/2)). - Vaclav Kotesovec, Aug 09 2021
a(n) = Sum_{k=1..floor(n/2)} (-1)^(k-1) * (2*k)! * Stirling2(n,2*k)/(k * 2^k). - Seiichi Manyama, Jan 23 2025

A331978 E.g.f.: -log(2 - cosh(x)) (even powers only).

Original entry on oeis.org

0, 1, 4, 46, 1114, 46246, 2933074, 263817646, 31943268634, 5009616448246, 987840438629794, 239217148602642046, 69790939492563608554, 24143849395162438623046, 9772368696995766705116914, 4575221153658910691872135246, 2453303387149157947685779986874
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2020

Keywords

Crossrefs

Programs

  • Maple
    ptan := proc(n) option remember;
        if irem(n, 2) = 0 then 0 else
        add(`if`(k=0, 1, binomial(n, k)*ptan(n - k)), k = 0..n-1, 2) fi end:
    A331978 := n -> ptan(2*n - 1):
    seq(A331978(n), n = 0..16);  # Peter Luschny, Jun 06 2022
  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[-Log[2 - Cosh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(0) = 0; a(n) = A094088(n) - (1/n) * Sum_{k=1..n-1} binomial(2*n,2*k) * A094088(n-k) * k * a(k).
a(n) ~ (2*n)! / (n * log(2 + sqrt(3))^(2*n)). - Vaclav Kotesovec, Feb 07 2020

A346390 Expansion of e.g.f. -log( 1 - (exp(x) - 1)^3 / 3! ).

Original entry on oeis.org

1, 6, 25, 100, 511, 3626, 30045, 262800, 2470171, 25889446, 302003065, 3821936300, 51672723831, 745789322466, 11505096936085, 189023074558600, 3288243760145491, 60319276499454686, 1164282909466221105, 23603464830964817700, 501435697062735519151
Offset: 3

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^3/3!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
    a[n_] := a[n] = StirlingS2[n, 3] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 3, 23}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(-log(1-(exp(x)-1)^3/3!))) \\ Michel Marcus, Aug 09 2021

Formula

a(n) = Stirling2(n,3) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,3) * k * a(k).
a(n) ~ (n-1)! / (log(6^(1/3)+1))^n. - Vaclav Kotesovec, Aug 09 2021
a(n) = Sum_{k=1..floor(n/3)} (3*k)! * Stirling2(n,3*k)/(k * 6^k). - Seiichi Manyama, Jan 23 2025

A346954 Expansion of e.g.f. -log( 1 - (exp(x) - 1)^4 / 4! ).

Original entry on oeis.org

1, 10, 65, 350, 1736, 9030, 60355, 561550, 6188996, 69919850, 781211795, 8854058850, 106994019406, 1433756147470, 21287253921635, 339206526695750, 5630710652048216, 96341917117951890, 1708973354556320875, 31787279786739738250, 623964823224788294426
Offset: 4

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
    a[n_] := a[n] = StirlingS2[n, 4] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 24}]

Formula

a(n) = Stirling2(n,4) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,4) * k * a(k).
a(n) ~ (n-1)! / (log(2^(3/4)*3^(1/4) + 1))^n. - Vaclav Kotesovec, Aug 09 2021
a(n) = Sum_{k=1..floor(n/4)} (4*k)! * Stirling2(n,4*k)/(k * 24^k). - Seiichi Manyama, Jan 23 2025
Showing 1-10 of 12 results. Next