A009439
Expansion of e.g.f. log(1+x)/exp(tanh(x)).
Original entry on oeis.org
0, 1, -3, 8, -16, 29, -191, 1980, -14456, 85713, -657171, 7877880, -97759608, 1100545341, -13021637695, 185198054748, -2933940050000, 46990261427073, -774002505048195, 13811029423532424, -266175983849182016
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
[0] cat Coefficients(R!(Laplace( Log(1+x)*Exp(-Tanh(x)) ))); // G. C. Greubel, Sep 08 2023
-
With[{nn=20},CoefficientList[Series[Log[1+x]/Exp[Tanh[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 19 2023 *)
-
def A009439_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( log(1+x)*exp(-tanh(x)) ).egf_to_ogf().list()
A009439_list(31) # G. C. Greubel, Sep 08 2023
Definition clarified and previous Mathematica program replaced by
Harvey P. Dale, May 19 2023
A009435
Expansion of e.g.f.: log(1+x)/cosh(x).
Original entry on oeis.org
0, 1, -1, -1, 0, 29, -105, 139, -2072, 31737, -247545, 1824151, -22456104, 313750293, -3929185169, 51584719523, -793292190480, 13137192234225, -221862616530705, 3947317975733039, -75492532592047280, 1522475446731094285
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
[0] cat Coefficients(R!(Laplace( Log(1+x)/Cosh(x) ))); // G. C. Greubel, Sep 06 2023
-
With[{nn=30},CoefficientList[Series[Log[1+x]/Cosh[x],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 01 2014 *)
-
my(x='x+O('x^30)); concat([0],Vec(serlaplace(log(1+x)/cosh(x)))) \\ Joerg Arndt, Sep 06 2023
-
def A009435_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( log(1+x)/cosh(x) ).egf_to_ogf().list()
A009435_list(40) # G. C. Greubel, Sep 06 2023
Definition clarified and prior Mathematica program replaced by
Harvey P. Dale, Oct 01 2014
A009433
Expansion of e.g.f. log(1+x)/cosh(tan(x)).
Original entry on oeis.org
0, 1, -1, -1, 0, -11, 15, 27, -504, 11817, -94185, 1226455, -12442056, 155936221, -1995562569, 27870901107, -423463160400, 6793396567633, -117302680146033, 2130615128588591, -40960288523646320, 827190717641773765
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
[0] cat Coefficients(R!(Laplace( Log(1+x)/Cosh(Tan(x)) ))); // G. C. Greubel, Sep 06 2023
-
With[{m=25}, CoefficientList[Series[Log[1+x]/Cosh[Tan[x]], {x,0,m}], x]*Range[0, m]!] (* modified by G. C. Greubel, Sep 06 2023 *)
CoefficientList[Series[Log[1 + x]*Sech[Tan[x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 23 2015 *)
-
my(x='x+O('x^30)); concat([0],Vec(serlaplace(log(1+x)/cosh(tan(x))))) \\ Joerg Arndt, Sep 06 2023
-
def A009433_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( log(1+x)/cosh(tan(x)) ).egf_to_ogf().list()
A009433_list(40) # G. C. Greubel, Sep 06 2023
A009434
Expansion of e.g.f: log(1+x)/cosh(tanh(x)).
Original entry on oeis.org
0, 1, -1, -1, 0, 69, -225, -1653, 3976, 187401, -965385, -14516745, 61266744, 3032650893, -21187300953, -491788726653, 2947006495920, 166337505847057, -1463633608132017, -46261934493321105, 358635306874354320
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
[0] cat Coefficients(R!(Laplace( Log(1+x)/Cosh(Tanh(x)) ))); // G. C. Greubel, Sep 06 2023
-
With[{nn=20},CoefficientList[Series[Log[1+x]/Cosh[Tanh[x]],{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, Jun 19 2013 *)
-
my(x='x+O('x^30)); concat([0],Vec(serlaplace(log(1+x)/cosh(tanh(x))))) \\ Joerg Arndt, Sep 06 2023
-
def A009434_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( log(1+x)/cosh(tanh(x)) ).egf_to_ogf().list()
A009434_list(40) # G. C. Greubel, Sep 06 2023
Definition clarified and prior Mathematica program replaced by
Harvey P. Dale, Jun 19 2013
A009436
Expansion of e.g.f. log(1+x)/exp(sin(x)).
Original entry on oeis.org
0, 1, -3, 8, -20, 59, -261, 1665, -12368, 99945, -888961, 8802045, -96423788, 1154791637, -14982150197, 209295667833, -3133083877248, 50039962416625, -849332973526881, 15266142375582901, -289679348425382572
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
[0] cat Coefficients(R!(Laplace( Log(1+x)*Exp(-Sin(x)) ))); // G. C. Greubel, Sep 08 2023
-
With[{m=30}, CoefficientList[Series[Log[1+x]/E^Sin[x], {x,0,m}], x]*Range[0,m]!] (* Vaclav Kotesovec, Jan 23 2015 *)
-
def A009436_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( log(1+x)*exp(-sin(x)) ).egf_to_ogf().list()
A009436_list(31) # G. C. Greubel, Sep 08 2023
A009437
Expansion of e.g.f. log(1+x)/exp(sinh(x)).
Original entry on oeis.org
0, 1, -3, 8, -28, 119, -581, 3345, -22352, 170889, -1480881, 14361885, -154177068, 1814792589, -23230500541, 321160966833, -4767464107904, 75612375796689, -1275789176648193, 22815192314465685, -431023517858496044
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
[0] cat Coefficients(R!(Laplace( Log(1+x)*Exp(-Sinh(x)) ))); // G. C. Greubel, Sep 08 2023
-
With[{nn=20},CoefficientList[Series[Log[1+x]/Exp[Sinh[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 01 2013 *)
-
def A009437_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( log(1+x)*exp(-sinh(x)) ).egf_to_ogf().list()
A009437_list(31) # G. C. Greubel, Sep 08 2023
A009438
Expansion of e.g.f. log(1+x)/exp(tan(x)).
Original entry on oeis.org
0, 1, -3, 8, -32, 149, -831, 5340, -38744, 316161, -2846611, 28263960, -305651048, 3593550245, -45584631743, 622159233948, -9091059243792, 141783419182561, -2351573180823939, 41355560621409352, -768924714448510480
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
[0] cat Coefficients(R!(Laplace( Log(1+x)*Exp(-Tan(x)) ))); // G. C. Greubel, Sep 08 2023
-
With[{nn=20},CoefficientList[Series[Log[1+x]/Exp[Tan[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 28 2014 *)
-
def A009438_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( log(1+x)*exp(-tan(x)) ).egf_to_ogf().list()
A009438_list(31) # G. C. Greubel, Sep 08 2023
A009432
Expansion of e.g.f. log(1+x)/cosh(sinh(x)).
Original entry on oeis.org
0, 1, -1, -1, 0, 9, -45, 447, -2744, 17553, -171585, 1757535, -19723176, 245370969, -3189613245, 44636677407, -674857335120, 10851333193249, -185485926579489, 3356664148618047, -64009236131219760, 1284480775318317225
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
[0] cat Coefficients(R!(Laplace( Log(1+x)/Cosh(Sinh(x)) ))); // G. C. Greubel, Sep 08 2023
-
With[{m=30}, CoefficientList[Series[Log[1+x]/Cosh[Sinh[x]], {x,0,m}], x]*Range[0, m]!] (* modified by G. C. Greubel, Sep 08 2023 *)
-
def A009432_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( log(1+x)/cosh(sinh(x)) ).egf_to_ogf().list()
A009432_list(31) # G. C. Greubel, Sep 08 2023
A009427
Expansion of e.g.f. log(1+x)/cos(tan(x)).
Original entry on oeis.org
0, 1, -1, 5, -12, 109, -405, 4913, -24976, 372633, -2419425, 42646845, -338219244, 6863821509, -64452230661, 1478191260393, -16062969072000, 410493211996977, -5072547848554017, 142840036992492789, -1979718755185227180
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
[0] cat Coefficients(R!(Laplace( Log(1+x)/Cos(Tan(x)) ))); // G. C. Greubel, Sep 06 2023
-
With[{m=25}, CoefficientList[Series[Log[1+x]/Cos[Tan[x]], {x,0,m}], x]*Range[0, m]!] (* modified by G. C. Greubel, Sep 06 2023 *)
CoefficientList[Series[Log[1 + x]*Sec[Tan[x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 24 2015 *)
-
my(x='x+O('x^30)); concat([0],Vec(serlaplace(log(1+x)/cos(tan(x))))) \\ Joerg Arndt, Sep 06 2023
-
def A009427_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( log(1+x)/cos(tan(x)) ).egf_to_ogf().list()
A009427_list(40) # G. C. Greubel, Sep 06 2023
A024338
Expansion of log(1+x)*log(1+tan(x))/2.
Original entry on oeis.org
0, 0, 1, -3, 15, -80, 542, -4158, 37228, -374592, 4237120, -53017712, 729890528, -10957004864, 178355968576, -3129133077376, 58889303575296, -1183497066823680, 25300855990394880, -573326855846475776
Offset: 0
-
With[{nn=20},CoefficientList[Series[Log[1+x]Log[1+Tan[x]]/2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 27 2011 *)
Extended with signs, Mar 1997
Showing 1-10 of 10 results.