A009445 a(n) = (2*n+1)!.
1, 6, 120, 5040, 362880, 39916800, 6227020800, 1307674368000, 355687428096000, 121645100408832000, 51090942171709440000, 25852016738884976640000, 15511210043330985984000000, 10888869450418352160768000000, 8841761993739701954543616000000, 8222838654177922817725562880000000
Offset: 0
Examples
G.f. = 1 + 6*x + 120*x^2 + 5040*x^3 + 362880*x^4 + 39916800*x^5 + ...
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 111.
- H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, p. 88.
- Isaac Newton, De analysi, 1669; reprinted in D. Whiteside, ed., The Mathematical Works of Isaac Newton, vol. 1, Johnson Reprint Co., 1964; see p. 20.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 32, equation 32:6:2 at page 301.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014.
- W. Dunham, Touring the calculus gallery, Amer. Math. Monthly, 112 (2005), 1-19.
- Eric Weisstein's World of Mathematics, Hyperbolic Sine.
Programs
-
Haskell
a009445 n = product [1..2*n+1] -- Reinhard Zumkeller, Dec 03 2011
-
Magma
[Factorial(2*n+1): n in [0..20]]; // Vincenzo Librandi, Oct 21 2011
-
Mathematica
Array[(2 # + 1)! &, 15] (* Robert G. Wilson v, Aug 08 2018 *)
-
PARI
a(n)=(n+n+1)! \\ Charles R Greathouse IV, Oct 20 2011
-
Sage
[stirling_number1(2*i,1) for i in range(1,22)] # Zerinvary Lajos, Jun 27 2008
-
Sage
T = taylor(sin(x^2), x, 0, 70) [(-1)^n/T.coefficient(x,4*n+2) for n in (0..15)] # Peter Luschny, Dec 14 2012
Formula
Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / (1 - 4*x)^(3/2). - Ilya Gutkovskiy, Jul 11 2021
Comments