cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A218729 a(n) = (26^n - 1)/25.

Original entry on oeis.org

0, 1, 27, 703, 18279, 475255, 12356631, 321272407, 8353082583, 217180147159, 5646683826135, 146813779479511, 3817158266467287, 99246114928149463, 2580398988131886039, 67090373691429037015, 1744349715977154962391, 45353092615406029022167, 1179180408000556754576343
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 26 (A009970); q-integers for q=26.

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-26*x)).
a(n) = floor(26^n/25).
a(n) = 27*a(n-1) - 26*a(n-2). (End)
E.g.f.: exp(x)*(exp(25*x) - 1)/25. - Elmo R. Oliveira, Aug 29 2024

A106710 Number of words with n letters from an alphabet of size 26 with at least two equal consecutive letters.

Original entry on oeis.org

0, 26, 1326, 50726, 1725126, 55009526, 1684153926, 50135658326, 1462218522726, 41984966747126, 1190791264331526, 33440126095275926, 931432109043580326, 25766955599293244726, 708683864685628269126, 19394355959426432653526, 528467641885089690397926
Offset: 1

Views

Author

Luca Colucci, May 14 2005

Keywords

Examples

			a(3) = 1326 because 26^3 - 26*(25^2) = 1326.
		

Crossrefs

Programs

  • Mathematica
    Table[26*(26^(n-1) -25^(n-1)), {n, 25}] (* G. C. Greubel, Sep 10 2021 *)
  • PARI
    a(n) = 26^n - 26*(25^(n - 1)); \\ Michel Marcus, Aug 14 2013
    
  • PARI
    concat(0, Vec(26*x^2/((25*x-1)*(26*x-1)) + O(x^100))) \\ Colin Barker, Nov 05 2015
    
  • Sage
    [26*(26^(n-1) - 25^(n-1)) for n in (1..25)] # G. C. Greubel, Sep 10 2021

Formula

a(n) = 26^n - 26*25^(n - 1).
From Colin Barker, Nov 05 2015: (Start)
a(n) = 51*a(n-1) - 650*a(n-2) for n>2.
G.f.: 26*x^2 / ((1-25*x)*(1-26*x)). (End)
From G. C. Greubel, Sep 10 2021: (Start)
a(n) = 26*(A009970(n-1) - A009969(n-1)).
E.g.f.: exp(26*x) - (26/25)*exp(25*x). (End)

Extensions

More terms from Michel Marcus, Aug 14 2013

A165847 Totally multiplicative sequence with a(p) = 26.

Original entry on oeis.org

1, 26, 26, 676, 26, 676, 26, 17576, 676, 676, 26, 17576, 26, 676, 676, 456976, 26, 17576, 26, 17576, 676, 676, 26, 456976, 676, 676, 17576, 17576, 26, 17576, 26, 11881376, 676, 676, 676, 456976, 26, 676, 676, 456976, 26, 17576, 26, 17576, 17576
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Programs

  • Mathematica
    26^PrimeOmega[Range[100]] (* G. C. Greubel, Apr 13 2016 *)
  • PARI
    a(n) = 26^bigomega(n); \\ Altug Alkan, Apr 13 2016

Formula

a(n) = A009970(A001222(n)) = 26bigomega(n) = 26^A001222(n).

A285511 Value of the n-th Roman number interpreted as Latin alphabetic number.

Original entry on oeis.org

9, 243, 6327, 256, 22, 581, 15115, 392999, 258, 24, 633, 16467, 428151, 16480, 646, 16805, 436939, 11360423, 16482, 648, 16857, 438291, 11395575, 438304, 16870, 438629, 11404363, 296513447, 438306, 16872, 438681, 11405715, 296548599, 11405728, 438694, 11406053, 296557387, 7710492071, 11405730, 636
Offset: 1

Views

Author

Martin Janecke, Apr 20 2017

Keywords

Comments

Lists can be numbered using different counter styles, for example using the Latin alphabet A, B, C, ..., Z, AA, AB, ... or the Roman number system I, II, III, IV, V, VI, ... Both these counter styles are defined in CSS Counter Styles Level 3 as "upper-alpha" and "upper-roman". Roman number representations are defined for the range 1 to 3999 only. Roman numerals are a subset of Latin alphabet letters; for every Roman number there is exactly one alphabetic number that looks identical. Denote the n-th Roman number by R(n) and the m-th alphabetic number by L(m), then R(n) and L(a(n)) look identical.

Examples

			The number n = 1 is written "I" in the Roman number system. "I" being the ninth letter in the alphabet is also the ninth number in the alphabetic number system. Therefore a(1) = 9.
The number n = 2 is written "II" in the Roman number system. "II" is also the 243rd number in the alphabetic number system, because "I" is the ninth letter in the 26-letter alphabet and 9*26^1+9*26^0 = 243. Therefore a(2) = 243.
The number n = 3 is written "III" in the Roman number system. "III" is also the 6327th number in the alphabetic number system because "I" is the ninth letter in the 26-letter alphabet and 9*26^2+9*26^1+9*26^0 = 6327. Therefore a(3) = 6327.
The number n = 4 is written "IV" in the Roman number system. "IV" is also the 256th number in the alphabetic number system because "I" is the ninth letter in the 26-letter alphabet and "V" is the 22nd letter, therefore a(4) = 9*26^1 + 22 = 256.
The number n = 600 is written "DC" in the Roman number system. "DC" is also the 107th number in the alphabetic number system, because "D" and "C" are the fourth and third letters in the 26-letter alphabet and 4*26^1+3*26^0 = 107. Therefore a(600) = 107.
		

Crossrefs

Showing 1-4 of 4 results.