A009998 Triangle in which j-th entry in i-th row is (j+1)^(i-j).
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 4, 1, 1, 16, 27, 16, 5, 1, 1, 32, 81, 64, 25, 6, 1, 1, 64, 243, 256, 125, 36, 7, 1, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 4, 3, 1; 1, 8, 9, 4, 1; 1, 16, 27, 16, 5, 1; 1, 32, 81, 64, 25, 6, 1; ... From _Gus Wiseman_, May 01 2021: (Start) The rows of the triangle are obtained by reading antidiagonals upward in the following table of A(k,n) = n^k, with offset k = 0, n = 1: n=1: n=2: n=3: n=4: n=5: n=6: k=0: 1 1 1 1 1 1 k=1: 1 2 3 4 5 6 k=2: 1 4 9 16 25 36 k=3: 1 8 27 64 125 216 k=4: 1 16 81 256 625 1296 k=5: 1 32 243 1024 3125 7776 k=6: 1 64 729 4096 15625 46656 k=7: 1 128 2187 16384 78125 279936 k=8: 1 256 6561 65536 390625 1679616 k=9: 1 512 19683 262144 1953125 10077696 k=10: 1 1024 59049 1048576 9765625 60466176 (End)
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 24.
Links
- T. D. Noe, Rows n=0..50 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Peter Luschny, Figurate number - a very short introduction
Crossrefs
Row sums give A026898.
Column n = 2 of the array is A000079.
Column n = 3 of the array is A000244.
Row k = 2 of the array is A000290.
Row k = 3 of the array is A000578.
Diagonal n = k of the array is A000312.
Diagonal n = k + 1 of the array is A000169.
Diagonal n = k + 2 of the array is A000272.
The transpose of the array is A009999.
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.
Programs
-
Haskell
a009998 n k = (k + 1) ^ (n - k) a009998_row n = a009998_tabl !! n a009998_tabl = map reverse a009999_tabl -- Reinhard Zumkeller, Feb 02 2014
-
Maple
E := (n,x) -> `if`(n=0,1,x*(1-x)*diff(E(n-1,x),x)+E(n-1,x)*(1+(n-1)*x)); G := (n,x) -> E(n,x)/(1-x)^(n+1); A009998 := (n,k) -> coeff(series(G(n-k,x),x,18),x,k); seq(print(seq(A009998(n,k),k=0..n)),n=0..6); # Peter Luschny, Aug 02 2010
-
Mathematica
Flatten[Table[(j+1)^(i-j),{i,0,20},{j,0,i}]] (* Harvey P. Dale, Dec 25 2012 *)
-
PARI
T(i,j)=(j+1)^(i-j) \\ Charles R Greathouse IV, Feb 06 2017
Formula
T(n,n) = 1; T(n,k) = (k+1)*T(n-1,k) for k=0..n-1. - Reinhard Zumkeller, Feb 02 2014
T(n,m) = (m+1)*Sum_{k=0..n-m}((n+1)^(k-1)*(n-m)^(n-m-k)*(-1)^(n-m-k)*binomial(n-m-1,k-1)). - Vladimir Kruchinin, Sep 12 2015
Extensions
a(62) corrected to 512 by T. D. Noe, Dec 20 2007
Comments