A010036 Sum of 2^n, ..., 2^(n+1) - 1.
1, 5, 22, 92, 376, 1520, 6112, 24512, 98176, 392960, 1572352, 6290432, 25163776, 100659200, 402644992, 1610596352, 6442418176, 25769738240, 103079084032, 412316598272, 1649266917376, 6597068718080, 26388276969472, 105553112072192, 422212456677376
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- A. M. Hinz, S. Klavžar, U. Milutinović, C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 59. Book's website
- Andreas M. Hinz and Daniele Parisse, The Average Eccentricity of Sierpinski Graphs, Graphs and Combinatorics, 2011.
- Index entries for linear recurrences with constant coefficients, signature (6, -8).
Programs
-
Magma
[ &+[ k: k in [2^n..2^(n+1)-1] ]: n in [0..21] ]; // Klaus Brockhaus, Nov 27 2009
-
Magma
[2^n *(2^n+(2^(n+1)-1))/2: n in [0..25]]; // Vincenzo Librandi, Sep 11 2015
-
Maple
f:= n-> 3*2^(2*n-1)-2^(n-1): seq(f(n), n=0..30);
-
Mathematica
Table[2^n (2^n+(2^(n+1)-1))/2,{n,0,25}] (* or *) LinearRecurrence[{6,-8},{1,5},30] (* Harvey P. Dale, Jan 23 2012 *) With[{nn=30},Total/@TakeList[Range[2^(nn+1)-1],2^Range[0,nn]]] (* Harvey P. Dale, May 26 2024 *)
-
PARI
a(n)=3<<(2*n-1)-1<<(n-1) \\ Charles R Greathouse IV, Jul 02 2013
Formula
a(n+1) = 4*a(n) + 2^n with a(0) = 1 (with a(0)=0, see A006516). a(n) = 2^(n-1)*A055010(n). - Philippe Deléham, Feb 20 2004
a(n) = 3*2^(2*n-1) - 2^(n-1). - Daniele Parisse, Jun 10 2007
From Klaus Brockhaus, Nov 27 2009: (Start)
a(n) = 6*a(n-1)-8*a(n-2) for n > 1; a(0) = 1, a(1) = 5.
G.f.: (1-x)/((1-2*x)*(1-4*x)). (End)
a(n) = Sum_{k, 0<=k<=n} A125185(n,k)*2^k. - Philippe Deléham, Feb 26 2012
Comments