A010100 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=10.
1, 10, 10, 100, 1000, 100000, 100000000, 10000000000000, 1000000000000000000000, 10000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000000000
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..16
- W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
- P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
- D. Bowman, A new generalization of Davison's theorem, Fib. Quart. Volume 26 (1988), 40-45
Crossrefs
Programs
-
Maple
a:= n-> 10^(<<1|1>, <1|0>>^n)[1, 2]: seq(a(n), n=0..12); # Alois P. Heinz, Jun 17 2014
-
Mathematica
10^Fibonacci[Range[0,10]] (* Harvey P. Dale, Feb 12 2023 *)
-
PARI
a(n) = 10^fibonacci(n); \\ Michel Marcus, Oct 25 2017
Formula
a(n) = 10^Fibonacci(n).
Comments