cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010100 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=10.

Original entry on oeis.org

1, 10, 10, 100, 1000, 100000, 100000000, 10000000000000, 1000000000000000000000, 10000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Nov 11 2013: (Start)
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 9*sum {n = 1..inf} 1/10^floor(n*phi) (= 81*sum {n = 1..inf} floor(n/phi)/10^n) = 0.90990 90990 99090 99090 ... = 1/(1 + 1/(10 + 1/(10 + 1/(100 + 1/(1000 + 1/(100000 + 1/(100000000 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565 and A005614.
Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/10^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

Crossrefs

Programs

  • Maple
    a:= n-> 10^(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    10^Fibonacci[Range[0,10]] (* Harvey P. Dale, Feb 12 2023 *)
  • PARI
    a(n) = 10^fibonacci(n); \\ Michel Marcus, Oct 25 2017

Formula

a(n) = 10^Fibonacci(n).