cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A005614 The binary complement of the infinite Fibonacci word A003849. Start with 1, apply 0->1, 1->10, iterate, take limit.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Previous name was: The infinite Fibonacci word (start with 1, apply 0->1, 1->10, iterate, take limit).
Characteristic function of A022342. - Philippe Deléham, May 03 2004
a(n) = number of 0's between successive 1's (see also A003589 and A007538). - Eric Angelini, Jul 06 2005
With offset 1 this is the characteristic sequence for Wythoff A-numbers A000201=[1,3,4,6,...].
Eric Angelini's comment made me think that if 1 is defined to be the number of 0's between successive 1's in a string of 0's and 1's, then this string is 101. Applying the same operation to the digits of 101 leads to 101101, the iteration leads to successive palindromes of lengths given by A001911, up to a(n). - Rémi Schulz, Jul 06 2010
For generalized Fibonacci words see A221150, A221151, A221152, ... - Peter Bala, Nov 11 2013
The limiting mean of the first n terms is phi - 1; the limiting variance is phi (A001622). - Clark Kimberling, Mar 12 2014
Apply the difference operator to every column of the Wythoff difference array, A080164, to get an array of Fibonacci numbers, F(h). Replace each F(h) with h, and apply the difference operator to every column. In the resulting array, every column is A005614. - Clark Kimberling, Mar 02 2015
Binary expansion of the rabbit constant A014565. - M. F. Hasler, Nov 10 2018

Examples

			The infinite word is 101101011011010110101101101011...
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.
  • G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.

Crossrefs

Binary complement of A003849, which is the standard form of this sequence.
Two other essentially identical sequences are A096270, A114986.
Subwords: A178992, A171676.
Cf. A000045 (Fibonacci numbers), A001468, A001911, A005206 (partial sums), A014565, A014675, A022342, A036299, A044432, A221150, A221151, A221152.
Cf. A339051 (odd bisection), A339052 (even bisection).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a005614 n = a005614_list !! n
    a005614_list = map (1 -) a003849_list
    -- Reinhard Zumkeller, Apr 07 2012
    
  • Magma
    [Floor((n+1)*(-1+Sqrt(5))/2)-Floor(n*(-1+Sqrt(5))/2): n in [1..100]]; // Vincenzo Librandi, Jan 17 2019
    
  • Maple
    Digits := 50; u := evalf((1-sqrt(5))/2); A005614 := n->floor((n+1)*u)-floor(n*u);
  • Mathematica
    Nest[ Flatten[ # /. {0 -> {1}, 1 -> {1, 0}}] &, {1}, 10] (* Robert G. Wilson v, Jan 30 2005 *)
    Flatten[Nest[{#, #[[1]]} &, {1, 0}, 9]] (* IWABUCHI Yu(u)ki, Oct 23 2013 *)
    SubstitutionSystem[{0 -> {1}, 1 -> {1, 0}}, {1, 0}, 9] // Last (* Jean-François Alcover, Feb 06 2020 *)
  • PARI
    a(n,w1,s0,s1)=local(w2); for(i=2,n,w2=[ ]; for(k=1,length(w1),w2=concat(w2, if(w1[ k ],s1,s0))); w1=w2); w2
    for(n=2,10,print(n" "a(n,[ 0 ],[ 1 ],[ 1,0 ]))) \\ Gives successive convergents to sequence
    
  • PARI
    /* for m>=1 compute exactly A183136(m+1)+1 terms of the sequence */
    r=(1+sqrt(5))/2;v=[1,0];for(n=2,m,v=concat(v,vector(floor((n+1)/r),i,v[i]));a(n)=v[n];) /* Benoit Cloitre, Jan 16 2013 */
    
  • Python
    from math import isqrt
    def A005614(n): return (n+isqrt(m:=5*(n+2)**2)>>1)-(n+1+isqrt(m-10*n-15)>>1) # Chai Wah Wu, Aug 17 2022

Formula

Define strings S(0)=1, S(1)=10, thereafter S(n)=S(n-1)S(n-2); iterate. Sequence is S(oo). The individual S(n)'s are given in A036299.
a(n) = floor((n+2)*u) - floor((n+1)*u), where u = (-1 + sqrt(5))/2.
Sum_{n>=0} a(n)/2^(n+1) = A014565. - R. J. Mathar, Jul 19 2013
From Peter Bala, Nov 11 2013: (Start)
If we read the present sequence as the digits of a decimal constant c = 0.101101011011010 ... then we have the series representation c = Sum_{n >= 1} 1/10^floor(n*phi). An alternative representation is c = Sum_{n >= 1} 1/10^floor(n/phi) - 10/9.
The constant 9*c has the simple continued fraction representation [0; 1, 10, 10, 100, 1000, ..., 10^Fibonacci(n), ...]. See A010100.
Using this result we can find the alternating series representation c = 1/9 - 9*Sum_{n >= 1} (-1)^(n+1)*(1 + 10^Fibonacci(3*n+1))/( (10^(Fibonacci(3*n - 1)) - 1)*(10^(Fibonacci(3*n + 2)) - 1) ). The series converges very rapidly: for example, the first 10 terms of the series give a value for c accurate to more than 5.7 million decimal places. Cf. A014565. (End)
a(n) = A005206(n+1) - A005206(n). a(2*n) = A339052(n); a(2*n+1) = A339051(n+1). - Peter Bala, Aug 09 2022

Extensions

Corrected by Clark Kimberling, Oct 04 2000
Name corrected by Michel Dekking, Apr 02 2019

A000301 a(n) = a(n-1)*a(n-2) with a(0) = 1, a(1) = 2; also a(n) = 2^Fibonacci(n).

Original entry on oeis.org

1, 2, 2, 4, 8, 32, 256, 8192, 2097152, 17179869184, 36028797018963968, 618970019642690137449562112, 22300745198530623141535718272648361505980416, 13803492693581127574869511724554050904902217944340773110325048447598592
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Continued fraction expansion of s = A073115 = 1.709803442861291... = Sum_{k >= 0} (1/2^floor(k * phi)) where phi is the golden ratio (1 + sqrt(5))/2. - Benoit Cloitre, Aug 19 2002
The continued fraction expansion of the above constant s is [1; 1, 2, 2, 4, ...], that of the rabbit constant r = s-1 = A014565 is [0; 1, 2, 2, 4, ...]. - M. F. Hasler, Nov 10 2018

References

  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002, p. 913.

Crossrefs

Programs

  • Haskell
    a000301 = a000079 . a000045
    a000301_list = 1 : scanl (*) 2 a000301_list
    -- Reinhard Zumkeller, Mar 20 2013
    
  • Magma
    [2^Fibonacci(n): n in [0..20]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    A000301 := proc(n) option remember;
                 if n < 2 then 1+n
               else A000301(n-1)*A000301(n-2)
                 fi
               end:
    seq(A000301(n), n=0..15);
  • Mathematica
    2^Fibonacci[Range[0, 14]] (* Alonso del Arte, Jul 28 2016 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Jan 12 2012
    
  • SageMath
    [2^fibonacci(n) for n in range(15)] # G. C. Greubel, Jul 29 2024

Formula

a(n) ~ k^phi^n with k = 2^(1/sqrt(5)) = 1.3634044... and phi the golden ratio. - Charles R Greathouse IV, Jan 12 2012
a(n) = A000304(n+3) / A010098(n+1). - Reinhard Zumkeller, Jul 06 2014
Sum_{n>=0} 1/a(n) = A124091. - Amiram Eldar, Oct 27 2020
Limit_{n->oo} a(n)/a(n-1)^phi = 1. - Peter Woodward, Nov 24 2023

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 18 2011

A010098 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=3.

Original entry on oeis.org

1, 3, 3, 9, 27, 243, 6561, 1594323, 10460353203, 16677181699666569, 174449211009120179071170507, 2909321189362570808630465826492242446680483, 507528786056415600719754159741696356908742250191663887263627442114881
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Nov 01 2013: (Start)
Let phi = (1/2)*(1 + sqrt(5)) denote the golden ratio A001622. This sequence gives the simple continued fraction expansion of the constant c := 2*Sum_{n>=1} 1/3^floor(n*phi) (= 4*Sum_{n>=1} floor(n/phi)/3^n) = 0.768597560593155198508 ... = 1/(1 + 1/(3 + 1/(3 + 1/(9 + 1/(27 + 1/(243 + 1/(6561 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we put X(k) = sum {n >= 1} 1/3^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

Crossrefs

Programs

  • Haskell
    a010098 n = a010098_list !! n
    a010098_list = 1 : 3 : zipWith (*) a010098_list (tail a010098_list)
    -- Reinhard Zumkeller, Jul 06 2014
    
  • Magma
    [3^Fibonacci(n): n in [0..12]]; // G. C. Greubel, Jul 29 2024
    
  • Maple
    a[-1]:=1: a[0]:=3: a[1]:=3: for n from 2 to 13 do a[n]:=a[n-1]*a[n-2] od: seq(a[n], n=-1..10); # Zerinvary Lajos, Mar 19 2009
  • Mathematica
    3^Fibonacci[Range[0,13]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
    RecurrenceTable[{a[0]==1,a[1]==3,a[n]==a[n-1]a[n-2]},a,{n,15}] (* Harvey P. Dale, Jan 21 2021 *)
  • SageMath
    [3^fibonacci(n) for n in range(13)] # G. C. Greubel, Jul 29 2024

Formula

a(n) = 3^Fibonacci(n).
a(n+1) = A000304(n+3) / A000301(n). - Reinhard Zumkeller, Jul 06 2014

A244003 A(n,k) = k^Fibonacci(n); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 3, 4, 1, 0, 1, 5, 4, 9, 8, 1, 0, 1, 6, 5, 16, 27, 32, 1, 0, 1, 7, 6, 25, 64, 243, 256, 1, 0, 1, 8, 7, 36, 125, 1024, 6561, 8192, 1, 0, 1, 9, 8, 49, 216, 3125, 65536, 1594323, 2097152, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 17 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,   1,    1,     1,      1,       1, ...
  0, 1,   2,    3,     4,      5,       6, ...
  0, 1,   2,    3,     4,      5,       6, ...
  0, 1,   4,    9,    16,     25,      36, ...
  0, 1,   8,   27,    64,    125,     216, ...
  0, 1,  32,  243,  1024,   3125,    7776, ...
  0, 1, 256, 6561, 65536, 390625, 1679616, ...
		

Crossrefs

Rows n=0, 1+2, 3-8 give: A000012, A001477, A000290, A000578, A000584, A001016, A010801, A010809.
Main diagonal gives: A152915.

Programs

  • Maple
    A:= (n, k)-> k^(<<1|1>, <1|0>>^n)[1, 2]:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[0, 0] = 1; A[n_, k_] := k^Fibonacci[n]; Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 11 2015 *)

Formula

A(n,k) = k^A000045(n).
A(0,k) = 1, A(1,k) = k, A(n,k) = A(n-1,k) * A(n-2,k) for n>=2.

A214706 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=5.

Original entry on oeis.org

1, 5, 5, 25, 125, 3125, 390625, 1220703125, 476837158203125, 582076609134674072265625, 277555756156289135105907917022705078125, 161558713389263217748322010169914619837072677910327911376953125
Offset: 0

Views

Author

Vincenzo Librandi, Aug 01 2012

Keywords

Comments

a(17) has 1117 digits.
From Peter Bala, Nov 01 2013: (Start)
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 4*Sum_{n = 1..oo} 1/5^floor(n*phi) (= 16*Sum_{n = 1..oo} floor(n/phi)/5^n) = 0.83866 83869 91037 14262 ... = 1/(1 + 1/(5 + 1/(5 + 1/(25 + 1/(125 + 1/(3125 + 1/(390625 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/5^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

Crossrefs

Programs

  • Magma
    [5^Fibonacci(n): n in [0..13]];
    
  • Maple
    a:= n-> 5^(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    5^Fibonacci[Range[0,11]]
    nxt[{a_,b_}]:={b,a*b}; NestList[nxt,{1,5},12][[All,1]] (* Harvey P. Dale, Oct 14 2018 *)
  • SageMath
    [5^fibonacci(n) for n in range(15)] # G. C. Greubel, Jan 07 2024

Formula

a(n) = 5^Fibonacci(n).

A214887 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=7.

Original entry on oeis.org

1, 7, 7, 49, 343, 16807, 5764801, 96889010407, 558545864083284007, 54116956037952111668959660849, 30226801971775055948247051683954096612865741943
Offset: 0

Views

Author

Vincenzo Librandi, Aug 01 2012

Keywords

Comments

a(17) has 1350 digits.
From Peter Bala, Nov 01 2013: (Start)
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 6*sum {n = 1..inf} 1/7^floor(n*phi) (= 36*sum {n = 1..inf} floor(n/phi)/7^n) = 0.87718 67194 00499 51922 ... = 1/(1 + 1/(7 + 1/(7 + 1/(49 + 1/(343 + 1/(16807 + 1/(5764801 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/7^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

Crossrefs

Programs

  • Magma
    [7^Fibonacci(n): n in [0..10]];
  • Maple
    a:= n-> 7^(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    7^Fibonacci[Range[0,10]]
    nxt[{a_,b_}]:={b,a*b}; Transpose[NestList[nxt,{1,7},10]][[1]] (* Harvey P. Dale, Jun 10 2014 *)

Formula

a(n) = 7^Fibonacci(n).

A215270 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 6, 36, 216, 7776, 1679616, 13060694016, 21936950640377856, 286511799958070431838109696, 6285195213566005335561053533150026217291776, 1800782593726645086383198950649858141454002621435149880441896326660096
Offset: 0

Views

Author

Bruno Berselli, Aug 07 2012

Keywords

Comments

From Peter Bala, Nov 01 2013: (Start)
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 5*sum {n = 1..inf} 1/6^floor(n*phi) (= 25*sum {n = 1..inf} floor(n/phi)/6^n) = 0.86045 01626 86090 61353 ... = 1/(1 + 1/(6 + 1/(6 + 1/(36 + 1/(216 + 1/(7776 + 1/(1679616 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/6^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

Crossrefs

Cf. A166470 (same recurrence with initial values 2, 6). A014565.
Column k=6 of A244003.

Programs

  • Magma
    [6^Fibonacci(n): n in [0..11]];
  • Maple
    a:= n-> 6^(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 6, a[n] == a[n - 1] a[n - 2]}, a[n], {n, 0, 15}]

Formula

a(n) = 6^Fibonacci(n).

A215271 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=8.

Original entry on oeis.org

1, 8, 8, 64, 512, 32768, 16777216, 549755813888, 9223372036854775808, 5070602400912917605986812821504, 46768052394588893382517914646921056628989841375232, 237142198758023568227473377297792835283496928595231875152809132048206089502588928
Offset: 0

Views

Author

Bruno Berselli, Aug 07 2012

Keywords

Comments

From Peter Bala, Nov 01 2013: (Start)
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 7*sum {n = 1..inf} 1/8^floor(n*phi) (= 49*sum {n = 1..inf} floor(n/phi)/8^n) = 0.89040 80325 60827 28336 ... = 1/(1 + 1/(8 + 1/(8 + 1/(64 + 1/(512 + 1/(32768 + 1/(16777216 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/8^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

Crossrefs

Programs

  • Magma
    [8^Fibonacci(n): n in [0..11]];
  • Maple
    a:= n-> 8^(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == a[n - 1] a[n - 2]}, a[n], {n, 0, 15}]

Formula

a(n) = 8^Fibonacci(n).

A215272 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=9.

Original entry on oeis.org

1, 9, 9, 81, 729, 59049, 43046721, 2541865828329, 109418989131512359209, 278128389443693511257285776231761, 30432527221704537086371993251530170531786747066637049
Offset: 0

Views

Author

Bruno Berselli, Aug 07 2012

Keywords

Comments

From Peter Bala, Nov 01 2013: (Start)
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 8*sum {n = 1..inf} 1/9^floor(n*phi) (= 64*sum {n = 1..inf} floor(n/phi)/9^n) = 0.90109 74122 99938 29901 ... = 1/(1 + 1/(9 + 1/(9 + 1/(81 + 1/(729 + 1/(59049 + 1/(43046721 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/9^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

Crossrefs

Programs

  • Magma
    [9^Fibonacci(n): n in [0..10]];
    
  • Maple
    a:= n-> 9^(<<1|1>, <1|0>>^n)[1, 2]:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == a[n - 1] a[n - 2]}, a[n], {n, 0, 15}]
  • PARI
    a(n) = 9^fibonacci(n); \\ Jinyuan Wang, Apr 06 2019

Formula

a(n) = 9^Fibonacci(n).

A010099 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=4.

Original entry on oeis.org

1, 4, 4, 16, 64, 1024, 65536, 67108864, 4398046511104, 295147905179352825856, 1298074214633706907132624082305024, 383123885216472214589586756787577295904684780545900544
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Nov 01 2013: (Start)
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 3*sum {n = 1..inf} 1/4^floor(n*phi) (= 9*sum {n = 1..inf} floor(n/phi)/4^n) = 0.80938 42984 64421 90504 ... = 1/(1 + 1/(4 + 1/(4 + 1/(16 + 1/(64 + 1/(1024 + 1/(65536 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565.
Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/4^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End)

Crossrefs

Programs

  • Maple
    a[ -1]:=1:a[0]:=4: a[1]:=4: for n from 2 to 13 do a[n]:=a[n-1]*a[n-2] od: seq(a[n], n=-1..10); # Zerinvary Lajos, Mar 19 2009

Formula

a(n) = 4^Fibonacci(n).
Showing 1-10 of 10 results.