A000301 a(n) = a(n-1)*a(n-2) with a(0) = 1, a(1) = 2; also a(n) = 2^Fibonacci(n).
1, 2, 2, 4, 8, 32, 256, 8192, 2097152, 17179869184, 36028797018963968, 618970019642690137449562112, 22300745198530623141535718272648361505980416, 13803492693581127574869511724554050904902217944340773110325048447598592
Offset: 0
References
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002, p. 913.
Links
- T. D. Noe, Table of n, a(n) for n = 0..18
- Manosij Ghosh Dastidar and Michael Wallner, Bijections between Variants of Dyck Paths and Integer Compositions, arXiv:2406.16404 [math.CO], 2024. See p. 1.
- J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc., 63 (1977), 29-32.
- Samuele Giraudo, Intervals of balanced binary trees in the Tamari lattice, arXiv preprint arXiv:1107.3472 [math.CO], 2011-2012, and Theor Comput Sci 420 (2012) 1-27.
- Bertrand Teguia Tabuguia, Computing with D-Algebraic Sequences, arXiv:2412.20630 [math.AG], 2024. See p. 9.
- Index to divisibility sequences
Crossrefs
Programs
-
Haskell
a000301 = a000079 . a000045 a000301_list = 1 : scanl (*) 2 a000301_list -- Reinhard Zumkeller, Mar 20 2013
-
Magma
[2^Fibonacci(n): n in [0..20]]; // Vincenzo Librandi, Apr 18 2011
-
Maple
A000301 := proc(n) option remember; if n < 2 then 1+n else A000301(n-1)*A000301(n-2) fi end: seq(A000301(n), n=0..15);
-
Mathematica
2^Fibonacci[Range[0, 14]] (* Alonso del Arte, Jul 28 2016 *)
-
PARI
a(n)=1<
Charles R Greathouse IV, Jan 12 2012 -
SageMath
[2^fibonacci(n) for n in range(15)] # G. C. Greubel, Jul 29 2024
Formula
a(n) ~ k^phi^n with k = 2^(1/sqrt(5)) = 1.3634044... and phi the golden ratio. - Charles R Greathouse IV, Jan 12 2012
Sum_{n>=0} 1/a(n) = A124091. - Amiram Eldar, Oct 27 2020
Limit_{n->oo} a(n)/a(n-1)^phi = 1. - Peter Woodward, Nov 24 2023
Extensions
Offset changed from 1 to 0 by Vincenzo Librandi, Apr 18 2011
Comments