A010098 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=3.
1, 3, 3, 9, 27, 243, 6561, 1594323, 10460353203, 16677181699666569, 174449211009120179071170507, 2909321189362570808630465826492242446680483, 507528786056415600719754159741696356908742250191663887263627442114881
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..17
- W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
- P. G. Anderson, T. C. Brown, and P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
- D. Bowman, A new generalization of Davison's theorem, Fib. Quart. Volume 26 (1988), 40-45
Crossrefs
Programs
-
Haskell
a010098 n = a010098_list !! n a010098_list = 1 : 3 : zipWith (*) a010098_list (tail a010098_list) -- Reinhard Zumkeller, Jul 06 2014
-
Magma
[3^Fibonacci(n): n in [0..12]]; // G. C. Greubel, Jul 29 2024
-
Maple
a[-1]:=1: a[0]:=3: a[1]:=3: for n from 2 to 13 do a[n]:=a[n-1]*a[n-2] od: seq(a[n], n=-1..10); # Zerinvary Lajos, Mar 19 2009
-
Mathematica
3^Fibonacci[Range[0,13]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *) RecurrenceTable[{a[0]==1,a[1]==3,a[n]==a[n-1]a[n-2]},a,{n,15}] (* Harvey P. Dale, Jan 21 2021 *)
-
SageMath
[3^fibonacci(n) for n in range(13)] # G. C. Greubel, Jul 29 2024
Formula
a(n) = 3^Fibonacci(n).
Comments