A010127 Continued fraction for sqrt(23).
4, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8
Offset: 0
Examples
4.795831523312719541597438064... = 4 + 1/(1 + 1/(3 + 1/(1 + 1/(8 + ...)))). - _Harry J. Smith_, Jun 03 2009
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 95 at p. 262.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 275-276.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac.
- Index entries for continued fractions for constants.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
Crossrefs
Cf. A010479 (decimal expansion).
Programs
-
Mathematica
ContinuedFraction[Sqrt[23],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *) PadRight[{4},120,{8,1,3,1}] (* Harvey P. Dale, Oct 23 2024 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 17000); x=contfrac(sqrt(23)); for (n=0, 20000, write("b010127.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009
Formula
From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2) = 3, a(2^e) = 8 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 1/2^(s-1) + 5/4^s). (End)
From Stefano Spezia, Aug 17 2024: (Start)
G.f.: (4 + x + 3*x^2 + x^3 + 4*x^4)/(1 - x^4).
E.g.f.: (5*cos(x) + 11*cosh(x) + 2*sinh(x) - 8)/2. (End)