cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010127 Continued fraction for sqrt(23).

Original entry on oeis.org

4, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8, 1, 3, 1, 8
Offset: 0

Views

Author

Keywords

Examples

			4.795831523312719541597438064... = 4 + 1/(1 + 1/(3 + 1/(1 + 1/(8 + ...)))). - _Harry J. Smith_, Jun 03 2009
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 95 at p. 262.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 275-276.

Crossrefs

Cf. A010479 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[23],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
    PadRight[{4},120,{8,1,3,1}] (* Harvey P. Dale, Oct 23 2024 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 17000); x=contfrac(sqrt(23)); for (n=0, 20000, write("b010127.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2) = 3, a(2^e) = 8 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 1/2^(s-1) + 5/4^s). (End)
From Stefano Spezia, Aug 17 2024: (Start)
G.f.: (4 + x + 3*x^2 + x^3 + 4*x^4)/(1 - x^4).
E.g.f.: (5*cos(x) + 11*cosh(x) + 2*sinh(x) - 8)/2. (End)