cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A010486 Decimal expansion of square root of 31.

Original entry on oeis.org

5, 5, 6, 7, 7, 6, 4, 3, 6, 2, 8, 3, 0, 0, 2, 1, 9, 2, 2, 1, 1, 9, 4, 7, 1, 2, 9, 8, 9, 1, 8, 5, 4, 9, 5, 2, 0, 4, 7, 6, 3, 9, 3, 3, 7, 7, 5, 7, 0, 4, 1, 4, 3, 0, 3, 9, 6, 8, 4, 3, 2, 5, 8, 5, 6, 0, 3, 5, 8, 9, 8, 3, 9, 2, 5, 4, 2, 3, 6, 2, 9, 2, 9, 2, 7, 2, 1, 8, 3, 9, 6, 1, 8, 4, 9, 2, 6, 6, 7
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 5 followed by {1, 1, 3, 5, 3, 1, 1, 10} repeated. - Harry J. Smith, Jun 04 2009

Examples

			5.567764362830021922119471298918549520476393377570414303968432585603589....
		

Crossrefs

Cf. A010129 (continued fraction). - Harry J. Smith, Jun 04 2009

Programs

  • Mathematica
    RealDigits[N[Sqrt[31], 100]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 22 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(31); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010486.txt", n, " ", d));  \\ Harry J. Smith, Jun 04 2009

A041051 Denominators of continued fraction convergents to sqrt(31).

Original entry on oeis.org

1, 1, 2, 7, 37, 118, 155, 273, 2885, 3158, 6043, 21287, 112478, 358721, 471199, 829920, 8770399, 9600319, 18370718, 64712473, 341933083, 1090511722, 1432444805, 2522956527, 26662010075, 29184966602, 55846976677, 196725896633, 1039476459842, 3315155276159
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 1, 2, 7, 37, 118, 155, 273, 2885, 3158, 6043, 21287, 112478, 358721, 471199, 829920]; [n le 16 select I[n] else 3040*Self(n-8) - Self(n-16): n in [1..50]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[31],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011*)
    Denominator[Convergents[Sqrt[31], 30]] (* Vincenzo Librandi, Dec 10 2013 *)

Formula

G.f.: -(x^14 -x^13 +2*x^12 -7*x^11 +37*x^10 -118*x^9 +155*x^8 -273*x^7 -155*x^6 -118*x^5 -37*x^4 -7*x^3 -2*x^2 -x -1) / (x^16 -3040*x^8 +1). - Colin Barker, Nov 12 2013

Extensions

More terms from Colin Barker, Nov 12 2013

A307453 a(n) is the least prime p for which the continued fraction expansion of sqrt(p) has exactly n consecutive 1's starting at position 2.

Original entry on oeis.org

2, 3, 31, 7, 13, 3797, 5273, 4987, 90371, 79873, 2081, 111301, 1258027, 5325101, 12564317, 9477889, 47370431, 709669249, 1529640443, 2196104969, 392143681, 8216809361, 30739072339, 200758317433, 370949963971, 161356959383, 1788677860531, 7049166342469, 4484287435283, 3690992602753
Offset: 0

Views

Author

Michel Marcus, Apr 09 2019

Keywords

Examples

			For p = 2,  we have [1; 2, ...]; see A040000.
For p = 3,  we have [1; 1, 2, ...]; see A040001.
For p = 31, we have [5; 1, 1, 3, ...]; see A010129.
For p = 7,  we have [2; 1, 1, 1, 4, ...]; see A010121.
		

Crossrefs

Programs

  • PARI
    isok(p, n) = {my(c=contfrac(sqrt(p)));  for (k=2, n+1, if (c[k] != 1, return (0));); return(c[n+2] !=  1);}
    a(n) = {my(p=2); while (! isok(p, n), p = nextprime(p+1)); p;}

Formula

Limit_{n->infinity} (sqrt(a(n)) - floor(sqrt(a(n)))) = A094214. - Daniel Suteu, Apr 09 2019

Extensions

a(21)-a(29) from Daniel Suteu, Apr 09 2019
a(0) added by Chai Wah Wu, Apr 09 2019
Showing 1-3 of 3 results.