A010144 Continued fraction for sqrt(59).
7, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2
Offset: 0
Examples
7.681145747868608175769687021... = 7 + 1/(1 + 1/(2 + 1/(7 + 1/(2 + ...)))). - _Harry J. Smith_, Jun 07 2009
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac.
- Index entries for continued fractions for constants.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
Crossrefs
Cf. A010512 (decimal expansion).
Programs
-
Mathematica
ContinuedFraction[Sqrt[59],300] (* Vladimir Joseph Stephan Orlovsky, Mar 07 2011 *) PadRight[{7},120,{14,1,2,7,2,1}] (* Harvey P. Dale, May 15 2017 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(59)); for (n=0, 20000, write("b010144.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 07 2009
Formula
From Amiram Eldar, Nov 13 2023: (Start)
Multiplicative with a(2^e) = 2, a(3^e) = 7, and a(p^e) = 1 for p >= 5.
Dirichlet g.f.: zeta(s) * (1 + 1/2^s) * (1 + 2/3^(s-1)). (End)