cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010144 Continued fraction for sqrt(59).

Original entry on oeis.org

7, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2, 7, 2, 1, 14, 1, 2
Offset: 0

Views

Author

Keywords

Examples

			7.681145747868608175769687021... = 7 + 1/(1 + 1/(2 + 1/(7 + 1/(2 + ...)))). - _Harry J. Smith_, Jun 07 2009
		

Crossrefs

Cf. A010512 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[59],300] (* Vladimir Joseph Stephan Orlovsky, Mar 07 2011 *)
    PadRight[{7},120,{14,1,2,7,2,1}] (* Harvey P. Dale, May 15 2017 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(59)); for (n=0, 20000, write("b010144.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 07 2009

Formula

From Amiram Eldar, Nov 13 2023: (Start)
Multiplicative with a(2^e) = 2, a(3^e) = 7, and a(p^e) = 1 for p >= 5.
Dirichlet g.f.: zeta(s) * (1 + 1/2^s) * (1 + 2/3^(s-1)). (End)