A010169 Continued fraction for sqrt(98).
9, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18
Offset: 0
Examples
9.89949493661166534161182106... = 9 + 1/(1 + 1/(8 + 1/(1 + 1/(18 + ...)))). - _Harry J. Smith_, Jun 12 2009
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac.
- Index entries for continued fractions for constants.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).
Crossrefs
Cf. A010549 (decimal expansion).
Programs
-
Mathematica
ContinuedFraction[Sqrt[98],300] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2011 *) PadRight[{9},120,{18,1,8,1}] (* Harvey P. Dale, Dec 13 2015 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 24000); x=contfrac(sqrt(98)); for (n=0, 20000, write("b010169.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 12 2009
Formula
From Wesley Ivan Hurt, Jun 23 2021: (Start)
a(n) = a(n-4).
a(0) = 9; a(n) = 7 + 6*(-1)^n + 5*cos(n*Pi/2) for n > 0. (End)
From Amiram Eldar, Nov 14 2023: (Start)
Multiplicative with a(2) = 8, a(2^e) = 18 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 7/2^s + 5/2^(2*s-1)). (End)