cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010169 Continued fraction for sqrt(98).

Original entry on oeis.org

9, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18, 1, 8, 1, 18
Offset: 0

Views

Author

Keywords

Examples

			9.89949493661166534161182106... = 9 + 1/(1 + 1/(8 + 1/(1 + 1/(18 + ...)))). - _Harry J. Smith_, Jun 12 2009
		

Crossrefs

Cf. A010549 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[98],300] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2011 *)
    PadRight[{9},120,{18,1,8,1}] (* Harvey P. Dale, Dec 13 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 24000); x=contfrac(sqrt(98)); for (n=0, 20000, write("b010169.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 12 2009

Formula

From Wesley Ivan Hurt, Jun 23 2021: (Start)
a(n) = a(n-4).
a(0) = 9; a(n) = 7 + 6*(-1)^n + 5*cos(n*Pi/2) for n > 0. (End)
From Amiram Eldar, Nov 14 2023: (Start)
Multiplicative with a(2) = 8, a(2^e) = 18 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 7/2^s + 5/2^(2*s-1)). (End)