A010186 Continued fraction for sqrt(125).
11, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- G. Xiao, 'Contfrac' tool on WIMS.
- Index entries for continued fractions for constants
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
Crossrefs
Cf. A172074.
Programs
-
Mathematica
ContinuedFraction[Sqrt[125], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 12 2011 *) LinearRecurrence[{0,0,0,0,1},{11,5,1,1,5,22},80] (* or *) PadRight[ {11},80,{22,5,1,1,5}] (* Harvey P. Dale, Oct 05 2016 *)
-
PARI
default(realprecision,199); contfrac(sqrt(125)) \\ _M. F. Hasler, Sep 09 2011
-
PARI
a(n)=[22, 5, 1, 1, 5][n%5+1]-11*!n \\ M. F. Hasler, Sep 09 2011
-
Python
from sympy import sqrt from sympy.ntheory.continued_fraction import continued_fraction_iterator def aupton(nn): gen = continued_fraction_iterator(sqrt(125)) return [next(gen) for i in range(nn+1)] print(aupton(74)) # Michael S. Branicky, Nov 05 2021
-
Python
# second version based on linear recurrence def a(n): return 11 if n == 0 else [5, 1, 1, 5, 22][(n-1)%5] print([a(n) for n in range(75)]) # Michael S. Branicky, Nov 05 2021
Formula
G.f.: (11+5*x+x^2+x^3+5*x^4+11*x^5)/((1-x)*(1+x+x^2+x^3+x^4)). - Bruno Berselli, Sep 10 2011
a(n) = a(n-5) for n >= 6. - Wesley Ivan Hurt, Mar 01 2023
Comments