cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A248300 Egyptian fraction representation of sqrt(76) (A010528) using a greedy function.

Original entry on oeis.org

8, 2, 5, 57, 3937, 37141276, 4653057274142158, 47471949655200856696698957090199, 11484366883753641302577416484692763851090325557224592536410101596, 1021543423762203659811429437059378653018184069838777743837274072099337791716358457056702326068913163280349514932095292745066307994
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 76]]

A010154 Continued fraction for sqrt(76).

Original entry on oeis.org

8, 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16, 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16, 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16, 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16, 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16, 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16, 1, 2, 1, 1, 5
Offset: 0

Views

Author

Keywords

Examples

			8.717797887081347104473963967... = 8 + 1/(1 + 1/(2 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 09 2009
		

Crossrefs

Cf. A010528 Decimal expansion. - Harry J. Smith, Jun 09 2009

Programs

  • Mathematica
    ContinuedFraction[Sqrt[76],300] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2011 *)
    PadRight[{8},100,{16,1,2,1,1,5,4,5,1,1,2,1}] (* Harvey P. Dale, Jul 06 2021 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 18000); x=contfrac(sqrt(76)); for (n=0, 20000, write("b010154.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 09 2009

A041134 Numerators of continued fraction convergents to sqrt(76).

Original entry on oeis.org

8, 9, 26, 35, 61, 340, 1421, 7445, 8866, 16311, 41488, 57799, 966272, 1024071, 3014414, 4038485, 7052899, 39302980, 164264819, 860627075, 1024891894, 1885518969, 4795929832, 6681448801, 111699110648
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[76],30]] (* Harvey P. Dale, Aug 24 2011 *)
    CoefficientList[Series[- (x^23 - 8 x^22 + 9 x^21 - 26 x^20 + 35 x^19 - 61 x^18 + 340 x^17 - 1421 x^16 + 7445 x^15 - 8866 x^14 + 16311 x^13 - 41488 x^12 - 57799 x^11 - 41488 x^10 - 16311 x^9 - 8866 x^8 - 7445 x^7 - 1421 x^6 - 340 x^5 - 61 x^4 - 35 x^3 - 26 x^2 - 9 x - 8)/((x^12 - 340 x^6 + 1) (x^12 + 340 x^6 + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 26 2013 *)

Formula

a(n) = 115598*a(n-12)-a(n-24). G.f.: -(x^23 -8*x^22 +9*x^21 -26*x^20 +35*x^19 -61*x^18 +340*x^17 -1421*x^16 +7445*x^15 -8866*x^14 +16311*x^13 -41488*x^12 -57799*x^11 -41488*x^10 -16311*x^9 -8866*x^8 -7445*x^7 -1421*x^6 -340*x^5 -61*x^4 -35*x^3 -26*x^2 -9*x-8) /( (x^12-340*x^6+1)*(x^12+340*x^6+1) ). [Colin Barker, Jul 19 2012]

Extensions

Formula corrected by Colin Barker, Jul 24 2012

A041135 Denominators of continued fraction convergents to sqrt(76).

Original entry on oeis.org

1, 1, 3, 4, 7, 39, 163, 854, 1017, 1871, 4759, 6630, 110839, 117469, 345777, 463246, 809023, 4508361, 18842467, 98720696, 117563163, 216283859, 550130881, 766414740, 12812766721, 13579181461, 39971129643, 53550311104, 93521440747, 521157514839, 2178151500103
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 115598*a(n-12)-a(n-24). G.f.: -(x^22 -x^21 +3*x^20 -4*x^19 +7*x^18 -39*x^17 +163*x^16 -854*x^15 +1017*x^14 -1871*x^13 +4759*x^12 -6630*x^11 -4759*x^10 -1871*x^9 -1017*x^8 -854*x^7 -163*x^6 -39*x^5 -7*x^4 -4*x^3 -3*x^2 -x -1)/((x^12-340*x^6+1)*(x^12+340*x^6+1)). [Colin Barker, Jul 19 2012]

Extensions

Formula corrected by Colin Barker, Jul 24 2012
Showing 1-4 of 4 results.