A010554 a(n) = phi(phi(n)), where phi is the Euler totient function.
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 8, 2, 6, 4, 4, 4, 10, 4, 8, 4, 6, 4, 12, 4, 8, 8, 8, 8, 8, 4, 12, 6, 8, 8, 16, 4, 12, 8, 8, 10, 22, 8, 12, 8, 16, 8, 24, 6, 16, 8, 12, 12, 28, 8, 16, 8, 12, 16, 16, 8, 20, 16, 20, 8, 24, 8
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- Burton, D. M. "The Order of an Integer Modulo n," "Primitive Roots for Primes," and "Composite Numbers Having Primitive Roots." Sections 8.1-8.3 in Elementary Number Theory, 4th ed. Dubuque, IA: William C. Brown Publishers, pp. 184-205, 1989.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
- Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
- S. R. Finch, Idempotents and Nilpotents Modulo n (arXiv:math.NT/0605019)
- Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732 [math.CO], 2012.
- Eric Weisstein's World of Mathematics, Primitive Root.
Programs
-
Haskell
a010554 = a000010 . a000010 -- Reinhard Zumkeller, Dec 26 2012
-
Magma
[EulerPhi(EulerPhi(n)): n in [1..100]]; // Vincenzo Librandi, Feb 24 2018
-
Maple
with(numtheory): f := n->phi(phi(n));
-
Mathematica
Table[EulerPhi[EulerPhi[n]],{n,0,200}] (* Vladimir Joseph Stephan Orlovsky, Nov 10 2009 *) Nest[EulerPhi[#]&,Range[100],2] (* Harvey P. Dale, Jan 13 2024 *)
-
PARI
a(n)=eulerphi(eulerphi(n)) \\ Charles R Greathouse IV, Feb 06 2017
Comments