cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A018025 Powers of cube root of 17 rounded to nearest integer.

Original entry on oeis.org

1, 3, 7, 17, 44, 112, 289, 743, 1911, 4913, 12633, 32482, 83521, 214756, 552198, 1419857, 3650852, 9387369, 24137569, 62064487, 159585272, 410338673, 1055096276, 2712949630, 6975757441, 17936636689, 46120143717, 118587876497, 304922823712, 784042443182
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010589, A018024, A018026, and powers of cube root of k rounded up: A017980 (k=2), A017983 (k=3), A017986 (k=4), A017989 (k=5), A017992 (k=6), A017995 (k=7), A018001 (k=9), A018004 (k=10), A018007 (k=11), A018010 (k=12), A018013 (k=13), A018016 (k=14), A018019 (k=15), A018022 (k=16), this sequence (k=17), A018028 (k=18), A018031 (k=19), A018034 (k=20), A018037 (k=21), A018040 (k=22), A018043 (k=23), A018046 (k=24).

Programs

  • Magma
    [Round(17^(n/3)): n in [0..40]]; // Vincenzo Librandi, Jan 08 2014
    
  • Mathematica
    Table[Round[17^(n/3)], {n, 0, 40}] (* Vincenzo Librandi, Jan 08 2014 *)
  • PARI
    a(n) = round((17^(1/3))^n); \\ Michel Marcus, Nov 23 2013
    
  • Python
    from sympy import integer_nthroot
    def A018025(n): return -integer_nthroot(m:=17**n,3)[0]+integer_nthroot(m<<3,3)[0] # Chai Wah Wu, Jun 18 2024

Extensions

More terms from Michel Marcus, Nov 23 2013

A018024 Powers of cube root of 17 rounded down.

Original entry on oeis.org

1, 2, 6, 17, 43, 112, 289, 743, 1910, 4913, 12632, 32482, 83521, 214756, 552198, 1419857, 3650852, 9387368, 24137569, 62064486, 159585272, 410338673, 1055096275, 2712949630, 6975757441, 17936636688, 46120143716, 118587876497, 304922823711, 784042443182
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010589, A018025, A018026, and powers of cube root of k rounded down: A017979 (k=2), A017982 (k=3), A017985 (k=4), A017988 (k=5), A017991 (k=6), A017994 (k=7), A018000 (k=9), A018003 (k=10), A018006 (k=11), A018009 (k=12), A018012 (k=13), A018015 (k=14), A018018 (k=15), A018021 (k=16), this sequence (k=17), A018027 (k=18), A018030 (k=19), A018033 (k=20), A018036 (k=21), A018039 (k=22), A018042 (k=23), A018045 (k=24).

Programs

Extensions

More terms from Michel Marcus, Nov 23 2013

A018026 Powers of cube root of 17 rounded up.

Original entry on oeis.org

1, 3, 7, 17, 44, 113, 289, 744, 1911, 4913, 12633, 32483, 83521, 214757, 552199, 1419857, 3650853, 9387369, 24137569, 62064487, 159585273, 410338673, 1055096276, 2712949631, 6975757441, 17936636689, 46120143717, 118587876497, 304922823712
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010589, A018024, A018025, and powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), A018005 (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), this sequence (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

  • Magma
    [Ceiling(17^(n/3)): n in [0..40]]; // Vincenzo Librandi, Jan 10 2014
  • Maple
    Digits:= 1000:
    a:= n-> ceil(17^(n/3)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 23 2013
  • Mathematica
    Table[Ceiling[17^(n/3)], {n, 0, 40}] (* Vincenzo Librandi, Jan 10 2014 *)
  • PARI
    a(n) = if (n % 3, ceil((17^(1/3))^n), 17^(n/3)); \\ Michel Marcus, Nov 23 2013
    

A010247 Continued fraction for cube root of 17.

Original entry on oeis.org

2, 1, 1, 3, 138, 1, 1, 3, 2, 3, 1, 1, 207, 1, 2, 2, 1, 1, 1, 1, 2, 4, 9, 1, 2, 4, 1, 1, 3, 4, 277, 2, 5, 3, 3, 3, 1, 1, 1, 1, 13, 2, 15, 20, 2, 1, 1, 1, 1, 1, 2, 1, 2, 18, 2, 4, 1, 22, 20, 51, 23, 2, 1, 3, 2, 204, 1, 2, 3, 1, 4, 1, 3, 76
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010589.

Programs

Showing 1-4 of 4 results.