cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010673 Period 2: repeat [0, 2].

Original entry on oeis.org

0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0
Offset: 0

Views

Author

Keywords

Comments

Euler number (or Euler characteristic) of (n+1)-sphere. - Franz Vrabec, Sep 07 2007
First differences of A109613. - Reinhard Zumkeller, Dec 05 2009
a(n) = Sum_{k=0..n-1} (-1)^k*N_k, for n >= 1, is Schläfli's generalization of Euler's formula for simply-connected n-dimensional polytopes. N_0 is the number of vertices, ..., N_{d-1} is the number of (d-1)-dimensional faces. See Coxeter's book for references, also for Poincaré's proof. - Wolfdieter Lang, Feb 09 2018
Decimal expansion of 2/99. - R. J. Mathar, May 15 2025

References

  • R. Carter, G. Segal, I. Macdonald, Lectures on Lie Groups and Lie Algebras, London Mathematical Society Student Texts 32, Cambridge University Press, 1995; see p. 68.
  • H. S. M. Coxeter, Regular Polytopes, third ed., Dover publications, New York, 1973, p. 165.

Crossrefs

Cf. A109613.

Programs

  • GAP
    Flat(List([0..80],n->[0,2])); # Muniru A Asiru, Oct 26 2018
  • Maple
    seq(op([0,2]),n=0..80); # Muniru A Asiru, Oct 26 2018
  • Mathematica
    PadRight[{},120,{0,2}] (* or *) LinearRecurrence[{0,1},{0,2},120] (* Harvey P. Dale, May 29 2016 *)
  • Maxima
    makelist(if evenp(n) then 0 else 2, n, 0, 30); /* Martin Ettl, Nov 11 2012 */
    
  • Maxima
    makelist(concat(0,", ",2), n, 0, 40); /* Bruno Berselli, Nov 13 2012 */
    
  • PARI
    a(n)=1-(-1)^n \\ Charles R Greathouse IV, Oct 07 2015
    

Formula

a(n) = 1 - (-1)^n.
a(n) = 2*(n mod 2). - Paolo P. Lava, Oct 20 2006
G.f.: -2*x / ((x-1)*(1+x)). - R. J. Mathar, Apr 06 2011
E.g.f.: (exp(2*x) - 1)/exp(x). - Elmo R. Oliveira, Dec 19 2023