A109613
Odd numbers repeated.
Original entry on oeis.org
1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 33, 33, 35, 35, 37, 37, 39, 39, 41, 41, 43, 43, 45, 45, 47, 47, 49, 49, 51, 51, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 63, 63, 65, 65, 67, 67, 69, 69, 71, 71, 73
Offset: 0
G.f. = 1 + x + 3*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 7*x^6 + 7*x^7 + 9*x^8 + 9*x^9 + ...
Complete coach system for (a composite) b = 2*n + 1 = 33: Sigma(33) ={[1; 5], [5, 7, 13; 2, 1, 2]} (the first two rows are here 1 and 5, 7, 13), a_{up}(33) = a(15) = 15. But 15 is not in the reduced residue system modulo 33, so the maximal (odd) a number is 13. For the prime b = 31, a_{up}(31) = a(14) = 15 appears as maximum of the first rows. - _Wolfdieter Lang_, Feb 19 2020
- Peter Hilton and Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, 3rd printing 2012, pp. (260-281).
-
a109613 = (+ 1) . (* 2) . (`div` 2)
a109613_list = 1 : 1 : map (+ 2) a109613_list
-- Reinhard Zumkeller, Oct 27 2012, Feb 21 2011
-
A109613:=n->2*floor(n/2)+1; seq(A109613(k), k=0..100); # Wesley Ivan Hurt, Oct 22 2013
-
Flatten@ Array[{2# - 1, 2# - 1} &, 37] (* Robert G. Wilson v, Jul 07 2012 *)
(# - Boole[EvenQ[#]] &) /@ Range[80] (* Alonso del Arte, Sep 11 2019 *)
With[{c=2*Range[0,40]+1},Riffle[c,c]] (* Harvey P. Dale, Jan 02 2020 *)
-
A109613(n)=n>>1<<1+1 \\ Charles R Greathouse IV, Feb 24 2011
-
def a(n) : return( len( CuspForms( Gamma0( 5), 2*n + 4, prec=1). basis())); # Michael Somos, May 29 2013
-
((1 to 49) by 2) flatMap { List.fill(2)() } // _Alonso del Arte, Sep 11 2019
A052928
The even numbers repeated.
Original entry on oeis.org
0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68, 68, 70, 70, 72, 72
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- C. D. Godsil and G. Royle, Algebraic Graph Theory, Springer, 2001, page 181. - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 07 2009
- V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. Beierle, A. Biryukov and A. Udovenko, On degree-d zero-sum sets of full rank, Cryptography and Communications, November 2019.
- W. Eisfeld and A. Viel, Higher order (A+E)xe pseudo-Jahn-Teller coupling, J. Chem. Phys., 122, 204317 (2005).
- Nathan Fox, Finding Linear-Recurrent Solutions to Hofstadter-Like Recurrences Using Symbolic Computation, arXiv:1609.06342 [math.NT], 2016.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 914
- J. Sondow and E. W. Weisstein, MathWorld: Wallis Formula
- Eric Weisstein's World of Mathematics, Chromatic Number
- Eric Weisstein's World of Mathematics, Legendre-Gauss Quadrature
- Eric Weisstein's World of Mathematics, Maximum Vertex Degree
- Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
- Eric Weisstein's World of Mathematics, Random Matrix
- Eric Weisstein's World of Mathematics, White Bishop Graph
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1)
- Index entries for Molien series
Cf.
A000034,
A000124,
A004001,
A004526,
A005843,
A007590,
A008619,
A008794,
A032766,
A064455,
A099392,
A109613,
A118266,
A123684,
A124356,
A192442,
A289187,
A342819.
For n >= 3,
A329822(n) gives the minimum weight of a Boolean function of algebraic degree at most n-3 whose support contains n linearly independent elements. -
Christof Beierle, Nov 25 2019
-
a052928 = (* 2) . flip div 2
a052928_list = 0 : 0 : map (+ 2) a052928_list
-- Reinhard Zumkeller, Jun 20 2015
-
[2*Floor(n/2) : n in [0..50]]; // Wesley Ivan Hurt, Sep 13 2014
-
spec := [S,{S=Union(Sequence(Prod(Z,Z)),Prod(Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Flatten[Table[{2n, 2n}, {n, 0, 39}]] (* Alonso del Arte, Jun 24 2012 *)
With[{ev=2Range[0,40]},Riffle[ev,ev]] (* Harvey P. Dale, May 08 2021 *)
Table[Round[n + 1/2], {n, -1, 72}] (* Ed Pegg Jr, Jul 28 2025 *)
-
a(n)=n\2*2 \\ Charles R Greathouse IV, Nov 20 2011
Removed duplicate of recurrence; corrected original recurrence and g.f. against offset -
R. J. Mathar, Feb 19 2010
A195013
Multiples of 2 and of 3 interleaved: a(2n-1) = 2n, a(2n) = 3n.
Original entry on oeis.org
2, 3, 4, 6, 6, 9, 8, 12, 10, 15, 12, 18, 14, 21, 16, 24, 18, 27, 20, 30, 22, 33, 24, 36, 26, 39, 28, 42, 30, 45, 32, 48, 34, 51, 36, 54, 38, 57, 40, 60, 42, 63, 44, 66, 46, 69, 48, 72, 50, 75, 52, 78, 54, 81, 56, 84, 58, 87, 60, 90, 62, 93, 64, 96, 66, 99, 68, 102
Offset: 1
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- D. H. Bailey, J. M. Borwein, and J. S. Kimberley, Discovery of large Poisson polynomials using a new arbitrary precision software package, Slides, 2015.
- D. H. Bailey, J. M. Borwein, and J. S. Kimberley, Computer discovery and analysis of large Poisson polynomials, 2016.
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Cf.
A111712 (partial sums of this sequence prepended with 1).
-
import Data.List (transpose)
a195013 n = a195013_list !! (n-1)
a195013_list = concat $ transpose [[2, 4 ..], [3, 6 ..]]
-- Reinhard Zumkeller, Apr 06 2015
-
&cat[[2*n,3*n]: n in [1..34]]; // Bruno Berselli, Sep 25 2011
-
With[{r = Range[50]}, Riffle[2*r, 3*r]] (* or *)
LinearRecurrence[{0, 2, 0, -1}, {2, 3, 4, 6}, 100] (* Paolo Xausa, Feb 09 2024 *)
-
a(n)=(5*n+(n-2)*(-1)^n+2)/4 \\ Charles R Greathouse IV, Sep 24 2015
A104698
Triangle read by rows: T(n,k) = Sum_{j=0..n-k} binomial(k, j)*binomial(n-j+1, k+1).
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 19, 8, 1, 6, 25, 44, 33, 10, 1, 7, 36, 85, 96, 51, 12, 1, 8, 49, 146, 225, 180, 73, 14, 1, 9, 64, 231, 456, 501, 304, 99, 16, 1, 10, 81, 344, 833, 1182, 985, 476, 129, 18, 1, 11, 100, 489, 1408, 2471, 2668, 1765, 704, 163, 20, 1, 12
Offset: 0
The Riordan triangle T begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
----------------------------------------------------
0: 1
1: 2 1
2: 3 4 1
3: 4 9 6 1
4: 5 16 19 8 1
5: 6 25 44 33 10 1
6: 7 36 85 96 51 12 1
7: 8 49 146 225 180 73 14 1
8: 9 64 231 456 501 304 99 16 1
9: 10 81 344 833 1182 985 476 129 18 1
10: 11 100 489 1408 2471 2668 1765 704 163 20 1
... reformatted and extended by _Wolfdieter Lang_, May 13 2025
From _Wolfdieter Lang_, May 13 2025: (Start)
Zumkeller recurrence (adapted for offset [0,0]): 19 = T(4, 2) = T(2, 1) + T(3, 1) + T(3,3) = 4 + 9 + 6 = 19.
A-sequence recurrence: 19 = T(4, 2) = 1*T(3. 1) + 2*T(3. 2) - 2*T(3, 3) = 9 + 12 - 2 = 19.
Z-sequence recurrence: 5 = T(4, 0) = 2*T(3, 0) - 1*T(3, 1) + 2*T(3, 2) - 6*T(3, 3) = 8 - 9 + 12 + 6 = 5.
Boas-Buck recurrence: 19 = T(4, 2) = (1/2)*((2 + 0)*T(2, 2) + (2 + 2*2)*T(3, 2)) = (1/2)*(2 + 36) = 19. (End)
-
a104698 n k = a104698_tabl !! (n-1) !! (k-1)
a104698_row n = a104698_tabl !! (n-1)
a104698_tabl = [1] : [2,1] : f [1] [2,1] where
f us vs = ws : f vs ws where
ws = zipWith (+) ([0] ++ us ++ [0]) $
zipWith (+) ([1] ++ vs) (vs ++ [0])
-- Reinhard Zumkeller, Jul 17 2015
-
A104698 := proc(n, k) add(binomial(k, j)*binomial(n-j+1, n-k-j), j=0..n-k) ; end proc:
seq(seq(A104698(n, k), k=0..n), n=0..15); # R. J. Mathar, Sep 04 2011
T := (n, k) -> binomial(n + 1, k + 1)*hypergeom([-k, k - n], [-n - 1], -1):
for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od;
T := proc(n, k) option remember; if k = 0 then n + 1 elif k = n then 1 else T(n-2, k-1) + T(n-1, k-1) + T(n-1, k) fi end: # Peter Luschny, May 13 2025
-
u[1, ] = 1; v[1, ] = 1;
u[n_, x_] := u[n, x] = x u[n-1, x] + v[n-1, x] + 1;
v[n_, x_] := v[n, x] = 2 x u[n-1, x] + v[n-1, x] + 1;
Table[CoefficientList[u[n, x], x], {n, 1, 11}] // Flatten (* Jean-François Alcover, Mar 10 2019, after Clark Kimberling *)
-
T(n,k)=sum(j=0,n-k,binomial(k,j)*binomial(n-j+1,k+1)) \\ Charles R Greathouse IV, Jan 16 2012
A154690
Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*binomial(n,k), 0 <= k <= n.
Original entry on oeis.org
2, 3, 3, 5, 8, 5, 9, 18, 18, 9, 17, 40, 48, 40, 17, 33, 90, 120, 120, 90, 33, 65, 204, 300, 320, 300, 204, 65, 129, 462, 756, 840, 840, 756, 462, 129, 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257, 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513
Offset: 0
Triangle begins as:
2;
3, 3;
5, 8, 5;
9, 18, 18, 9;
17, 40, 48, 40, 17;
33, 90, 120, 120, 90, 33;
65, 204, 300, 320, 300, 204, 65;
129, 462, 756, 840, 840, 756, 462, 129;
257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257;
513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513;
1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700, 5140, 1025;
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Lakhtakia, R. Messier, V. K. Varadan, and V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3.
-
A154690:= func< n,k | (2^(n-k)+2^k)*Binomial(n,k) >;
[A154690(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
-
A154690 := proc(n,m) binomial(n,m)*(2^(n-m)+2^m) ; end proc: # R. J. Mathar, Jan 13 2011
-
T[n_, m_]:= (2^(n-m) + 2^m)*Binomial[n,m];
Table[T[n,m], {n,0,12}, {m,0,n}]//Flatten
-
from sage.all import *
def A154690(n,k): return (pow(2,n-k)+pow(2,k))*binomial(n,k)
print(flatten([[A154690(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025
A154692
Triangle read by rows: T(n, k) = (2^(n-k)*3^k + 2^k*3^(n-k))*binomial(n, k).
Original entry on oeis.org
2, 5, 5, 13, 24, 13, 35, 90, 90, 35, 97, 312, 432, 312, 97, 275, 1050, 1800, 1800, 1050, 275, 793, 3492, 7020, 8640, 7020, 3492, 793, 2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315, 6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817
Offset: 0
Triangle begins
2;
5, 5;
13, 24, 13;
35, 90, 90, 35;
97, 312, 432, 312, 97;
275, 1050, 1800, 1800, 1050, 275;
793, 3492, 7020, 8640, 7020, 3492, 793;
2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315;
6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817;
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Lakhtakia, R. Messier, V. K. Varadan, and V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3.
-
A154692:= func< n,k | (2^(n-k)*3^k + 2^k*3^(n-k))*Binomial(n,k) >;
[A154692(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
-
A154692 := proc(n,m)
(2^(n-m)*3^m+2^m*3^(n-m))*binomial(n,m) ;
end proc:
seq(seq(A154692(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Oct 24 2011
-
p=2; q=3;
T[n_, m_]= (p^(n-m)*q^m + p^m*q^(n-m))*Binomial[n,m];
Table[T[n,m], {n,0,10}, {m,0,n}]//Flatten
-
from sage.all import *
def A154692(n,k): return (pow(2,n-k)*pow(3,k)+pow(2,k)*pow(3,n-k))*binomial(n,k)
print(flatten([[A154692(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025
A178142
Sum over the divisors d = 2 and/or 3 of n.
Original entry on oeis.org
0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3
Offset: 1
-
Table[Total@ Select[Divisors@ n, 2 <= # <= 3 &], {n, 120}] (* or *)
Table[Total[Divisors@ n /. {d_ /; d < 2 -> Nothing, d_ /; d > 3 -> Nothing} ], {n, 120}] (* Michael De Vlieger, Feb 07 2016 *)
Flatten[Table[{0,2,3,2,0,5}, {16}]] (* Amiram Eldar, Aug 03 2024 *)
-
a(n) = sumdiv(n, d, d*((d==2) || (d==3))); \\ Michel Marcus, Feb 07 2016
-
a(n) = [0,2,3,2,0,5][(n-1) % 6 + 1]; \\ Amiram Eldar, Aug 03 2024
Replaced recurrence by a shorter one; added keyword:less -
R. J. Mathar, May 28 2010
Original entry on oeis.org
0, 2, 4, 6, 8, 10, 12, 22, 16, 18, 20, 14, 24, 26, 28, 30, 64, 46, 36, 58, 40, 66, 76, 34, 48, 70, 52, 54, 56, 38, 60, 74, 32, 42, 68, 50, 72, 62, 44, 78, 80, 82, 84, 190, 136, 90, 172, 118, 192, 226, 100, 138, 208, 154, 108, 166, 112, 174, 220, 94, 120, 202, 148, 198, 184, 130
Offset: 0
-
from sympy import factorint
from sympy.ntheory.factor_ import digits
from operator import mul
def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
def a038502(n):
f=factorint(n)
return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
def a038500(n): return n/a038502(n)
def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
def a(n): return a263273(2*n) # Indranil Ghosh, May 22 2017
-
(define (A264984 n) (A263273 (+ n n)))
A274912
Square array read by antidiagonals upwards in which each new term is the least nonnegative integer distinct from its neighbors.
Original entry on oeis.org
0, 1, 2, 0, 3, 0, 1, 2, 1, 2, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0
The corner of the square array begins:
0, 2, 0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, ...
0, 2, 0, 2, ...
1, 3, 1, ...
0, 2, ...
1, ...
...
The sequence written as a triangle begins:
0;
1, 2;
0, 3, 0;
1, 2, 1, 2;
0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2, 1, 2;
...
-
ListTools:-Flatten([seq([[0,3]$i,0,[1,2]$(i+1)],i=0..10)]); # Robert Israel, Nov 14 2016
-
Table[Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Nov 14 2016 *)
A182839
Number of toothpicks and D-toothpicks added at n-th stage to the H-toothpick structure of A182838.
Original entry on oeis.org
0, 1, 2, 4, 4, 4, 6, 10, 8, 4, 6, 12, 16, 14, 14, 22, 16, 4, 6, 12, 16, 16, 20, 32, 36, 22, 14, 28, 42, 40, 36, 50, 32, 4, 6, 12, 16, 16, 20, 32, 36, 24
Offset: 0
From _Omar E. Pol_, Feb 06 2023: (Start)
The nonzero terms can write as an irregular triangle as shown below:
1, 2;
4, 4;
4, 6, 10, 8;
4, 6, 12, 16, 14, 14, 22, 16;
4, 6, 12, 16, 16, 20, 32, 36, 22, 14, 28, 42, 40, 36, 50, 32;
...
(End)
Showing 1-10 of 23 results.
Comments