cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A109613 Odd numbers repeated.

Original entry on oeis.org

1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 33, 33, 35, 35, 37, 37, 39, 39, 41, 41, 43, 43, 45, 45, 47, 47, 49, 49, 51, 51, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 63, 63, 65, 65, 67, 67, 69, 69, 71, 71, 73
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 01 2005

Keywords

Comments

The number of rounds in a round-robin tournament with n competitors. - A. Timothy Royappa, Aug 13 2011
Diagonal sums of number triangle A113126. - Paul Barry, Oct 14 2005
When partitioning a convex n-gon by all the diagonals, the maximum number of sides in resulting polygons is 2*floor(n/2)+1 = a(n-1) (from Moscow Olympiad problem 1950). - Tanya Khovanova, Apr 06 2008
The inverse values of the coefficients in the series expansion of f(x) = (1/2)*(1+x)*log((1+x)/(1-x)) lead to this sequence; cf. A098557. - Johannes W. Meijer, Nov 12 2009
From Reinhard Zumkeller, Dec 05 2009: (Start)
First differences: A010673; partial sums: A000982;
A059329(n) = Sum_{k = 0..n} a(k)*a(n-k);
A167875(n) = Sum_{k = 0..n} a(k)*A005408(n-k);
A171218(n) = Sum_{k = 0..n} a(k)*A005843(n-k);
A008794(n+2) = Sum_{k = 0..n} a(k)*A059841(n-k). (End)
Dimension of the space of weight 2n+4 cusp forms for Gamma_0(5). - Michael Somos, May 29 2013
For n > 4: a(n) = A230584(n) - A230584(n-2). - Reinhard Zumkeller, Feb 10 2015
The arithmetic function v+-(n,2) as defined in A290988. - Robert Price, Aug 22 2017
For n > 0, also the chromatic number of the (n+1)-triangular (Johnson) graph. - Eric W. Weisstein, Nov 17 2017
a(n-1), for n >= 1, is also the upper bound a_{up}(b), where b = 2*n + 1, in the first (top) row of the complete coach system Sigma(b) of Hilton and Pedersen [H-P]. All odd numbers <= a_{up}(b) of the smallest positive restricted residue system of b appear once in the first rows of the c(2*n+1) = A135303(n) coaches. If b is an odd prime a_{up}(b) is the maximum. See a comment in the proof of the quasi-order theorem of H-P, on page 263 ["Furthermore, every possible a_i < b/2 ..."]. For an example see below. - Wolfdieter Lang, Feb 19 2020
Satisfies the nested recurrence a(n) = a(a(n-2)) + 2*a(n-a(n-1)) with a(0) = a(1) = 1. Cf. A004001. - Peter Bala, Aug 30 2022
The binomial transform is 1, 2, 6, 16, 40, 96, 224, 512, 1152, 2560,.. (see A057711). - R. J. Mathar, Feb 25 2023

Examples

			G.f. = 1 + x + 3*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 7*x^6 + 7*x^7 + 9*x^8 + 9*x^9 + ...
Complete coach system for (a composite) b = 2*n + 1 = 33: Sigma(33) ={[1; 5], [5, 7, 13; 2, 1, 2]} (the first two rows are here 1 and 5, 7, 13), a_{up}(33) = a(15) = 15. But 15 is not in the reduced residue system modulo 33, so the maximal (odd) a number is 13. For the prime b = 31, a_{up}(31) = a(14) = 15 appears as maximum of the first rows. - _Wolfdieter Lang_, Feb 19 2020
		

References

  • Peter Hilton and Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, 3rd printing 2012, pp. (260-281).

Crossrefs

Complement of A052928 with respect to the universe A004526. - Guenther Schrack, Aug 21 2018
First differences of A000982, A061925, A074148, A105343, A116940, and A179207. - Guenther Schrack, Aug 21 2018

Programs

Formula

a(n) = 2*floor(n/2) + 1.
a(n) = A052928(n) + 1 = 2*A004526(n) + 1.
a(n) = A028242(n) + A110654(n).
a(n) = A052938(n-2) + A084964(n-2) for n > 1. - Reinhard Zumkeller, Aug 27 2005
G.f.: (1 + x + x^2 + x^3)/(1 - x^2)^2. - Paul Barry, Oct 14 2005
a(n) = 2*a(n-2) - a(n-4), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 3. - Philippe Deléham, Nov 03 2008
a(n) = A001477(n) + A059841(n). - Philippe Deléham, Mar 31 2009
a(n) = 2*n - a(n-1), with a(0) = 1. - Vincenzo Librandi, Nov 13 2010
a(n) = R(n, -2), where R(n, x) is the n-th row polynomial of A211955. a(n) = (-1)^n + 2*Sum_{k = 1..n} (-1)^(n - k - 2)*4^(k-1)*binomial(n+k, 2*k). Cf. A084159. - Peter Bala, May 01 2012
a(n) = A182579(n+1, n). - Reinhard Zumkeller, May 06 2012
G.f.: ( 1 + x^2 ) / ( (1 + x)*(x - 1)^2 ). - R. J. Mathar, Jul 12 2016
E.g.f.: x*exp(x) + cosh(x). - Ilya Gutkovskiy, Jul 12 2016
From Guenther Schrack, Sep 10 2018: (Start)
a(-n) = -a(n-1).
a(n) = A047270(n+1) - (2*n + 2).
a(n) = A005408(A004526(n)). (End)
a(n) = A000217(n) / A004526(n+1), n > 0. - Torlach Rush, Nov 10 2023

A052928 The even numbers repeated.

Original entry on oeis.org

0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68, 68, 70, 70, 72, 72
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is also the binary rank of the complete graph K(n). - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 07 2009
Let I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then, for n >= 6, a(n) is the number of (0,1) n X n matrices A <= P^(-1)+I+P having exactly two 1's in every row and column with perA=2. - Vladimir Shevelev, Apr 12 2010
a(n+2) is the number of symmetry allowed, linearly independent terms at n-th order in the series expansion of the (E+A)xe vibronic perturbation matrix, H(Q) (cf. Eisfeld & Viel). - Bradley Klee, Jul 21 2015
The arithmetic function v_2(n,1) as defined in A289187. - Robert Price, Aug 22 2017
For n > 1, also the chromatic number of the n X n white bishop graph. - Eric W. Weisstein, Nov 17 2017
For n > 2, also the maximum vertex degree of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 23 2018
For n >= 2, a(n+2) gives the minimum weight of a Boolean function of algebraic degree at most n-2 whose support contains n linearly independent elements. - Christof Beierle, Nov 25 2019

References

  • C. D. Godsil and G. Royle, Algebraic Graph Theory, Springer, 2001, page 181. - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 07 2009
  • V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19.

Crossrefs

First differences: A010673; partial sums: A007590; partial sums of partial sums: A212964(n+1).
Complement of A109613 with respect to universe A004526. - Guenther Schrack, Dec 07 2017
Is first differences of A099392. Fixed point sequence: A005843. - Guenther Schrack, May 30 2019
For n >= 3, A329822(n) gives the minimum weight of a Boolean function of algebraic degree at most n-3 whose support contains n linearly independent elements. - Christof Beierle, Nov 25 2019

Programs

  • Haskell
    a052928 = (* 2) . flip div 2
    a052928_list = 0 : 0 : map (+ 2) a052928_list
    -- Reinhard Zumkeller, Jun 20 2015
  • Magma
    [2*Floor(n/2) : n in [0..50]]; // Wesley Ivan Hurt, Sep 13 2014
    
  • Maple
    spec := [S,{S=Union(Sequence(Prod(Z,Z)),Prod(Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Flatten[Table[{2n, 2n}, {n, 0, 39}]] (* Alonso del Arte, Jun 24 2012 *)
    With[{ev=2Range[0,40]},Riffle[ev,ev]] (* Harvey P. Dale, May 08 2021 *)
    Table[Round[n + 1/2], {n, -1, 72}] (* Ed Pegg Jr, Jul 28 2025 *)
  • PARI
    a(n)=n\2*2 \\ Charles R Greathouse IV, Nov 20 2011
    

Formula

a(n) = 2*floor(n/2).
G.f.: 2*x^2/((-1+x)^2*(1+x)).
a(n) + a(n+1) + 2 - 2*n = 0.
a(n) = n - 1/2 + (-1)^n/2.
a(n) = n + Sum_{k=1..n} (-1)^k. - William A. Tedeschi, Mar 20 2008
a(n) = a(n-1) + a(n-2) - a(n-3). - R. J. Mathar, Feb 19 2010
a(n) = |A123684(n) - A064455(n)| = A032766(n) - A008619(n-1). - Jaroslav Krizek, Mar 22 2011
For n > 0, a(n) = floor(sqrt(n^2+(-1)^n)). - Francesco Daddi, Aug 02 2011
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=0 and b(k)=2^k for k>0. - Philippe Deléham, Oct 19 2011
a(n) = A109613(n) - 1. - M. F. Hasler, Oct 22 2012
a(n) = n - (n mod 2). - Wesley Ivan Hurt, Jun 29 2013
a(n) = a(a(n-1)) + a(n-a(n-1)) for n>2. - Nathan Fox, Jul 24 2016
a(n) = 2*A004526(n). - Filip Zaludek, Oct 28 2016
E.g.f.: x*exp(x) - sinh(x). - Ilya Gutkovskiy, Oct 28 2016
a(-n) = -a(n+1); a(n) = A005843(A004526(n)). - Guenther Schrack, Sep 11 2018
From Guenther Schrack, May 29 2019: (Start)
a(b(n)) = b(n) + ((-1)^b(n) - 1)/2 for any sequence b(n) of offset 0.
a(a(n)) = a(n), idempotent.
a(A086970(n)) = A124356(n-1) for n > 1.
a(A000124(n)) = A192447(n+1).
a(n)*a(n+1)/2 = A007590(n), also equals partial sums of a(n).
A007590(a(n)) = 2*A008794(n). (End)

Extensions

More terms from James Sellers, Jun 05 2000
Removed duplicate of recurrence; corrected original recurrence and g.f. against offset - R. J. Mathar, Feb 19 2010

A195013 Multiples of 2 and of 3 interleaved: a(2n-1) = 2n, a(2n) = 3n.

Original entry on oeis.org

2, 3, 4, 6, 6, 9, 8, 12, 10, 15, 12, 18, 14, 21, 16, 24, 18, 27, 20, 30, 22, 33, 24, 36, 26, 39, 28, 42, 30, 45, 32, 48, 34, 51, 36, 54, 38, 57, 40, 60, 42, 63, 44, 66, 46, 69, 48, 72, 50, 75, 52, 78, 54, 81, 56, 84, 58, 87, 60, 90, 62, 93, 64, 96, 66, 99, 68, 102
Offset: 1

Views

Author

Omar E. Pol, Sep 09 2011

Keywords

Comments

First differences of A195014.

Crossrefs

Cf. A111712 (partial sums of this sequence prepended with 1).

Programs

  • Haskell
    import Data.List (transpose)
    a195013 n = a195013_list !! (n-1)
    a195013_list = concat $ transpose [[2, 4 ..], [3, 6 ..]]
    -- Reinhard Zumkeller, Apr 06 2015
    
  • Magma
    &cat[[2*n,3*n]: n in [1..34]]; // Bruno Berselli, Sep 25 2011
    
  • Mathematica
    With[{r = Range[50]}, Riffle[2*r, 3*r]] (* or *)
    LinearRecurrence[{0, 2, 0, -1}, {2, 3, 4, 6}, 100] (* Paolo Xausa, Feb 09 2024 *)
  • PARI
    a(n)=(5*n+(n-2)*(-1)^n+2)/4 \\ Charles R Greathouse IV, Sep 24 2015

Formula

Pair(2*n, 3*n).
From Bruno Berselli, Sep 26 2011: (Start)
G.f.: x*(2+3*x)/(1-x^2)^2.
a(n) = (5*n+(n-2)*(-1)^n+2)/4.
a(n) = 2*a(n-2) - a(n-4) = a(n-2) + A010693(n-1).
a(n)+a(-n) = A010673(n).
a(n)-a(-n) = A106832(n). (End)

A104698 Triangle read by rows: T(n,k) = Sum_{j=0..n-k} binomial(k, j)*binomial(n-j+1, k+1).

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 19, 8, 1, 6, 25, 44, 33, 10, 1, 7, 36, 85, 96, 51, 12, 1, 8, 49, 146, 225, 180, 73, 14, 1, 9, 64, 231, 456, 501, 304, 99, 16, 1, 10, 81, 344, 833, 1182, 985, 476, 129, 18, 1, 11, 100, 489, 1408, 2471, 2668, 1765, 704, 163, 20, 1, 12
Offset: 0

Views

Author

Gary W. Adamson, Mar 19 2005

Keywords

Comments

The n-th column of the triangle is the binomial transform of the n-th row of A081277, followed by zeros. Example: column 3, (1, 6, 19, 44, ...) = binomial transform of row 3 of A081277: (1, 5, 8, 4, 0, 0, 0, ...). A104698 = reversal by rows of A142978. - Gary W. Adamson, Jul 17 2008
This sequence is jointly generated with A210222 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) + 1 and v(n,x) = 2x*u(n-1,x) + v(n-1,x) + 1. See the Mathematica section at A210222. - Clark Kimberling, Mar 19 2012
This Riordan triangle T appears in a formula for A001100(n, 0) = A002464(n), for n >= 1. - Wolfdieter Lang, May 13 2025

Examples

			The Riordan triangle T begins:
  n\k  0   1   2    3    4    5    6   7   8  9 10 ...
  ----------------------------------------------------
  0:   1
  1:   2   1
  2:   3   4   1
  3:   4   9   6    1
  4:   5  16  19    8    1
  5:   6  25  44   33   10    1
  6:   7  36  85   96   51   12    1
  7:   8  49 146  225  180   73   14   1
  8:   9  64 231  456  501  304   99  16   1
  9:  10  81 344  833 1182  985  476 129  18  1
  10: 11 100 489 1408 2471 2668 1765 704 163 20  1
  ... reformatted and extended by _Wolfdieter Lang_, May 13 2025
From _Wolfdieter Lang_, May 13 2025: (Start)
Zumkeller recurrence (adapted for offset [0,0]): 19 = T(4, 2) = T(2, 1) + T(3, 1) + T(3,3) = 4 + 9 + 6 = 19.
A-sequence recurrence: 19 = T(4, 2) = 1*T(3. 1) + 2*T(3. 2) - 2*T(3, 3) = 9 + 12 - 2 = 19.
Z-sequence recurrence: 5 = T(4, 0) = 2*T(3, 0) - 1*T(3, 1) + 2*T(3, 2) - 6*T(3, 3) = 8 - 9 + 12 + 6 = 5.
Boas-Buck recurrence: 19 = T(4, 2) = (1/2)*((2 + 0)*T(2, 2) + (2 + 2*2)*T(3, 2)) = (1/2)*(2 + 36) = 19. (End)
		

Crossrefs

Diagonal sums are A008937(n+1).
Cf. A048739 (row sums), A008288, A005900 (column 3), A014820 (column 4)
Cf. A081277, A142978 by antidiagonals, A119328, A110271 (matrix inverse).

Programs

  • Haskell
    a104698 n k = a104698_tabl !! (n-1) !! (k-1)
    a104698_row n = a104698_tabl !! (n-1)
    a104698_tabl = [1] : [2,1] : f [1] [2,1] where
       f us vs = ws : f vs ws where
         ws = zipWith (+) ([0] ++ us ++ [0]) $
              zipWith (+) ([1] ++ vs) (vs ++ [0])
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    A104698 := proc(n, k) add(binomial(k, j)*binomial(n-j+1, n-k-j), j=0..n-k) ; end proc:
    seq(seq(A104698(n, k), k=0..n), n=0..15); # R. J. Mathar, Sep 04 2011
    T := (n, k) -> binomial(n + 1, k + 1)*hypergeom([-k, k - n], [-n - 1], -1):
    for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od;
    T := proc(n, k) option remember; if k = 0 then n + 1 elif k = n then 1 else T(n-2, k-1) + T(n-1, k-1) + T(n-1, k) fi end: # Peter Luschny, May 13 2025
  • Mathematica
    u[1, ] = 1; v[1, ] = 1;
    u[n_, x_] := u[n, x] = x u[n-1, x] + v[n-1, x] + 1;
    v[n_, x_] := v[n, x] = 2 x u[n-1, x] + v[n-1, x] + 1;
    Table[CoefficientList[u[n, x], x], {n, 1, 11}] // Flatten (* Jean-François Alcover, Mar 10 2019, after Clark Kimberling *)
  • PARI
    T(n,k)=sum(j=0,n-k,binomial(k,j)*binomial(n-j+1,k+1)) \\ Charles R Greathouse IV, Jan 16 2012
    

Formula

The triangle is extracted from the product A * B; A = [1; 1, 1; 1, 1, 1; ...], B = [1; 1, 1; 1, 3, 1; 1, 5, 5, 1; ...] both infinite lower triangular matrices (rest of the terms are zeros). The triangle of matrix B by rows = A008288, Delannoy numbers.
From Paul Barry, Jul 18 2005: (Start)
Riordan array (1/(1-x)^2, x(1+x)/(1-x)) = (1/(1-x), x)*(1/(1-x), x(1+x)/(1-x)).
T(n, k) = Sum_{j=0..n} Sum_{i=0..j-k} C(j-k, i)*C(k, i)*2^i.
T(n, k) = Sum_{j=0..k} Sum_{i=0..n-k-j} (n-k-j-i+1)*C(k, j)*C(k+i-1, i). (End)
T(n, k) = binomial(n+1, k+1)*2F1([-k, k-n], [-n-1], -1) where 2F1 is a Gaussian hypergeometric function. - R. J. Mathar, Sep 04 2011
T(n, k) = T(n-2, k-1) + T(n-1, k-1) + T(n-1, k) for 1 < k < n; T(n, 0) = n + 1; T(n, n) = 1. - Reinhard Zumkeller, Jul 17 2015
From Wolfdieter Lang, May 13 2025: (Start)
The Riordan triangle T = (1/(1 - x)^2, x*(1 + x)/(1 - x)) has the o.g.f. G(x, y) = 1/((1 - x)*(1 - x - y*x*(1+x))) for the row polynomials R(n, y) = Sum_{k=0..n} T(n, k)*y^k.
The o.g.f. for column k is G(k, x) = (1/(1 - x)^2)*(x*(1 + x)/(1 - x))^k, for k >= 0.
The o.g.f. for the diagonal m is D(m, x) = N(m, x)/(1 - x)^(m+1), with the numerator polynomial N(m, x) = Sum_{k=0..floor(m/2)} A034867(m, k)*x^(2*k) for m >= 0.
The row sums with o.g.f. R(x) = 1/((1 -x)*(1 - 2*x -x^2) give A048739.
The alternating row sums with o.g.f. 1/((1 - x)(1 + x^2)) give A133872.
The A-sequence for this Riordan triangle has o.g.f. A(x) = 1 + x + sqrt(1 + 6*x + x^2))/2 giving A112478(n). Hence T(n, k) = Sum_{j=0..n-k} A112478(j)*T(n-1, k-1+j), for n >= 1, k >= 1, T(n, k) = 0 for n < k, and T(0, 0) = 1.
The Z-sequence has o.g.f. (5 + x - sqrt(1 + 6*x + x^2))/2 = 3 + x - A(x) giving Z(n) = {2, -1, -A112478(n >= 2)}. Hence T(n, 0) = Sum_{j=0..n-1} Z(j)*T(n-1, j), for n >= 1. For A- and Z-sequences of Riordan triangles see a W. Lang link at A006232 with references.
The Boas-Buck sequences alpha and beta for the Riordan triangle T (see A046521 for the Aug 10 2017 comment and reference) are alpha(n) = A040000(n+1) = repeat{2} and beta(n) = A010673(n+1) = repeat{2,0}. Hence the recurrence for column T(n, k){n>=k}, with input T(k, k) = 1, for k >= 0, is T(n, k) = (1/(n-k)) * Sum{j=k..n-1} (2 + k*(1 + (-1)^(n-1-j))) *T(j,k), for n >= k+1. (End)

A154690 Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*binomial(n,k), 0 <= k <= n.

Original entry on oeis.org

2, 3, 3, 5, 8, 5, 9, 18, 18, 9, 17, 40, 48, 40, 17, 33, 90, 120, 120, 90, 33, 65, 204, 300, 320, 300, 204, 65, 129, 462, 756, 840, 840, 756, 462, 129, 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257, 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Comments

From G. C. Greubel, Jan 18 2025: (Start)
A more general triangle of coefficients may be defined by T(n, k, p, q) = (p^(n-k)*q^k + p^k*q^(n-k))*A007318(n, k). When (p, q) = (2, 1) this sequence is obtained.
Some related triangles are:
(p, q) = (1, 1) : 2*A007318(n,k).
(p, q) = (2, 2) : 2*A038208(n,k).
(p, q) = (3, 2) : A154692(n,k).
(p, q) = (3, 3) : 2*A038221(n,k). (End)

Examples

			Triangle begins as:
     2;
     3,    3;
     5,    8,     5;
     9,   18,    18,     9;
    17,   40,    48,    40,    17;
    33,   90,   120,   120,    90,    33;
    65,  204,   300,   320,   300,   204,    65;
   129,  462,   756,   840,   840,   756,   462,   129;
   257, 1040,  1904,  2240,  2240,  2240,  1904,  1040,   257;
   513, 2322,  4752,  6048,  6048,  6048,  6048,  4752,  2322,  513;
  1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700, 5140, 1025;
		

Crossrefs

Cf. A215149.
Sums include: A008776 (row), A010673 (alternating sign row).
Columns k: A000051 (k=0).
Main diagonal: A059304.

Programs

  • Magma
    A154690:= func< n,k | (2^(n-k)+2^k)*Binomial(n,k) >;
    [A154690(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
    
  • Maple
    A154690 := proc(n,m) binomial(n,m)*(2^(n-m)+2^m) ; end proc: # R. J. Mathar, Jan 13 2011
  • Mathematica
    T[n_, m_]:= (2^(n-m) + 2^m)*Binomial[n,m];
    Table[T[n,m], {n,0,12}, {m,0,n}]//Flatten
  • Python
    from sage.all import *
    def A154690(n,k): return (pow(2,n-k)+pow(2,k))*binomial(n,k)
    print(flatten([[A154690(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025

Formula

T(n, k) = (2^(n-k) + 2^k)*A007318(n, k).
Sum_{k=0..n} T(n, k) = A008776(n) = A025192(n+1).
From G. C. Greubel, Jan 18 2025: (Start)
T(n, n-k) = T(n, k) (symmetry).
T(n, 1) = n + A215149(n), n >= 1.
T(2*n-1, n) = 3*A069720(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A010673(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000129(n+1) + A001045(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = n+1 + A107920(n+1). (End)

A154692 Triangle read by rows: T(n, k) = (2^(n-k)*3^k + 2^k*3^(n-k))*binomial(n, k).

Original entry on oeis.org

2, 5, 5, 13, 24, 13, 35, 90, 90, 35, 97, 312, 432, 312, 97, 275, 1050, 1800, 1800, 1050, 275, 793, 3492, 7020, 8640, 7020, 3492, 793, 2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315, 6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Examples

			Triangle begins
     2;
     5,     5;
    13,    24,    13;
    35,    90,    90,     35;
    97,   312,   432,    312,     97;
   275,  1050,  1800,   1800,   1050,    275;
   793,  3492,  7020,   8640,   7020,   3492,   793;
  2315, 11550, 26460,  37800,  37800,  26460, 11550,  2315;
  6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817;
		

Crossrefs

Sums include: A010673 (alternating sign row), A020699 (row), A020729 (row).
Related sequences: A007318, A154690,

Programs

  • Magma
    A154692:= func< n,k | (2^(n-k)*3^k + 2^k*3^(n-k))*Binomial(n,k) >;
    [A154692(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
    
  • Maple
    A154692 := proc(n,m)
            (2^(n-m)*3^m+2^m*3^(n-m))*binomial(n,m) ;
    end proc:
    seq(seq(A154692(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Oct 24 2011
  • Mathematica
    p=2; q=3;
    T[n_, m_]= (p^(n-m)*q^m + p^m*q^(n-m))*Binomial[n,m];
    Table[T[n,m], {n,0,10}, {m,0,n}]//Flatten
  • Python
    from sage.all import *
    def A154692(n,k): return (pow(2,n-k)*pow(3,k)+pow(2,k)*pow(3,n-k))*binomial(n,k)
    print(flatten([[A154692(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025

Formula

Sum_{k=0..n} T(n, k) = A020729(n) = A020699(n+1).
T(n,m) = A013620(n,m) + A013620(m,n). - R. J. Mathar, Oct 24 2011
From G. C. Greubel, Jan 18 2025: (Start)
T(2*n, n) = A119309(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A010673(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A015518(n+1) + A007482(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A088137(n+1) + A000225(n+1). (End)

A178142 Sum over the divisors d = 2 and/or 3 of n.

Original entry on oeis.org

0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3, 2, 0, 5, 0, 2, 3
Offset: 1

Views

Author

Vladimir Shevelev, May 21 2010

Keywords

Comments

Periodic with period {0,2,3,2,0,5}.

Crossrefs

Programs

  • Mathematica
    Table[Total@ Select[Divisors@ n, 2 <= # <= 3 &], {n, 120}] (* or *)
    Table[Total[Divisors@ n /. {d_ /; d < 2 -> Nothing, d_ /; d > 3 -> Nothing} ], {n, 120}] (* Michael De Vlieger, Feb 07 2016 *)
    Flatten[Table[{0,2,3,2,0,5}, {16}]] (* Amiram Eldar, Aug 03 2024 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d==2) || (d==3))); \\ Michel Marcus, Feb 07 2016
    
  • PARI
    a(n) = [0,2,3,2,0,5][(n-1) % 6 + 1]; \\ Amiram Eldar, Aug 03 2024

Formula

a(n) = Sum_{d|n, d=2 or d=3} d.
a(n+6) = a(n).
a(n) = -a(n-1) + a(n-3) + a(n-4).
G.f.: -x*(2+5*x+5*x^2) / ( (x-1)*(1+x)*(1+x+x^2) ).
a(n) = A010673(n) + A021337(n). - R. J. Mathar, May 28 2010
a(n) = A000203(n) - A171405(n). - Amiram Eldar, Aug 03 2024

Extensions

Replaced recurrence by a shorter one; added keyword:less - R. J. Mathar, May 28 2010

A264984 Even bisection of A263273; terms of A263262 doubled.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 22, 16, 18, 20, 14, 24, 26, 28, 30, 64, 46, 36, 58, 40, 66, 76, 34, 48, 70, 52, 54, 56, 38, 60, 74, 32, 42, 68, 50, 72, 62, 44, 78, 80, 82, 84, 190, 136, 90, 172, 118, 192, 226, 100, 138, 208, 154, 108, 166, 112, 174, 220, 94, 120, 202, 148, 198, 184, 130
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return a263273(2*n) # Indranil Ghosh, May 22 2017
  • Scheme
    (define (A264984 n) (A263273 (+ n n)))
    

Formula

a(n) = 2 * A263272(n).
a(n) = A263273(2*n).
Other identities. For all n >= 0:
A010873(a(n)) = 2 * A000035(n) = A010673(n).

A274912 Square array read by antidiagonals upwards in which each new term is the least nonnegative integer distinct from its neighbors.

Original entry on oeis.org

0, 1, 2, 0, 3, 0, 1, 2, 1, 2, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2016

Keywords

Comments

In the square array we have that:
Antidiagonal sums give A168237.
Odd-indexed rows give A010673.
Even-indexed rows give A010684.
Odd-indexed columns give A000035.
Even-indexed columns give A010693.
Odd-indexed antidiagonals give the initial terms of A010674.
Even-indexed antidiagonals give the initial terms of A000034.
Main diagonal gives A010674.
This is also a triangle read by rows in which each new term is the least nonnegative integer distinct from its neighbors.
In the triangle we have that:
Row sums give A168237.
Odd-indexed columns give A000035.
Even-indexed columns give A010693.
Odd-indexed diagonals give A010673.
Even-indexed diagonals give A010684.
Odd-indexed rows give the initial terms of A010674.
Even-indexed rows give the initial terms of A000034.
Odd-indexed antidiagonals give the initial terms of A010673.
Even-indexed antidiagonals give the initial terms of A010684.

Examples

			The corner of the square array begins:
0, 2, 0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, ...
0, 2, 0, 2, ...
1, 3, 1, ...
0, 2, ...
1, ...
...
The sequence written as a triangle begins:
0;
1, 2;
0, 3, 0;
1, 2, 1, 2;
0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2, 1, 2;
...
		

Crossrefs

Programs

  • Maple
    ListTools:-Flatten([seq([[0,3]$i,0,[1,2]$(i+1)],i=0..10)]); # Robert Israel, Nov 14 2016
  • Mathematica
    Table[Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Nov 14 2016 *)

Formula

a(n) = A274913(n) - 1.
From Robert Israel, Nov 14 2016: (Start)
G.f.: 3*x/(1-x^2) - Sum_{k>=0} (2*x^(2*k^2+3*k+1)-x^(2*k^2+5*k+3))/(1+x).
G.f. as triangle: x*(1+2*y+3*x*y)/((1-x^2*y^2)*(1-x^2)). (End)

A182839 Number of toothpicks and D-toothpicks added at n-th stage to the H-toothpick structure of A182838.

Original entry on oeis.org

0, 1, 2, 4, 4, 4, 6, 10, 8, 4, 6, 12, 16, 14, 14, 22, 16, 4, 6, 12, 16, 16, 20, 32, 36, 22, 14, 28, 42, 40, 36, 50, 32, 4, 6, 12, 16, 16, 20, 32, 36, 24
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2010

Keywords

Comments

From Omar E. Pol, Feb 06 2023: (Start)
The "word" of this cellular automaton is "ab".
Apart from the initial zero the structure of the irregular triangle is as shown below:
a,b;
a,b;
a,b,a,b;
a,b,a,b,a,b,a,b;
a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b;
...
Columns "a" contain numbers of toothpicks and D-toothpicks when in the top border of the structure there are only toothpicks (of length 1).
Columns "b" contain numbers of toothpicks and D-toothpicks when in the top border of the structure there are only D-toothpicks (of length sqrt(2)).
An associated sound to the animation could be (tick, tock), (tick, tock), ..., the same as the ticking clock sound.
Row lengths are the terms of A011782 multiplied by 2, also the column 2 of A296612.
For further information about the word of cellular automata see A296612.
It appears that the right border of the irregular triangle gives the even powers of 2. (End)

Examples

			From _Omar E. Pol_, Feb 06 2023: (Start)
The nonzero terms can write as an irregular triangle as shown below:
  1, 2;
  4, 4;
  4, 6, 10, 8;
  4, 6, 12, 16, 14, 14, 22, 16;
  4, 6, 12, 16, 16, 20, 32, 36, 22, 14, 28, 42, 40, 36, 50, 32;
  ...
(End)
		

Crossrefs

First differences of A182838.

Formula

Conjecture: a(n) = (A182841(n+1) + A010673(n))/4, n >= 2. - Omar E. Pol, Feb 10 2023

Extensions

a(19)-a(41) from Omar E. Pol, Jan 06 2023
Showing 1-10 of 23 results. Next