cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A171182 Period 6: repeat [0, 1, 1, 1, 0, 2].

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 04 2009, Dec 07 2009

Keywords

Comments

The number of divisors d of n of the form d=2 or 3. - Vladimir Shevelev, May 21 2010
a(n) = s(n+6), where s(k) is the number of partitions of k into distinct parts such that max(p) = 2 + min(p) for k >= 1, and (s(0)..s(6)) = (0,0,0,0,1,0,2). - Clark Kimberling, Apr 15 2014
Number of r X s integer-sided rectangles such that r < s, r + s = 2n, r | s and (s - r)/2 | s. - Wesley Ivan Hurt, Apr 24 2020
Number of positive integer solutions, (r,s,t), of the equation r^2 + t*s^2 = (n + 6)^2, where r + s = n + 6 and t < r <= s. For example, when n=6 we have the two solutions (4,8,2) and (6,6,3) since 4^2 + 2*8^2 = 12^2 and 6^2 + 3*6^2 = 12^2. - Wesley Ivan Hurt, Oct 04 2020

Crossrefs

Cf. A178142. - Vladimir Shevelev, May 21 2010
Cf. A115357.
Number of distinct prime factors <= p: this sequence (p=3), A178146 (p=5), A210679 (p=7).

Programs

Formula

a(n) = A115357(n-2) for n>1. - R. J. Mathar, Dec 09 2009
a(2) = 1, a(3) = 1, a(5) = 0, otherwise a(n) = a(n-2) + a(n-3) - a(n-5), where we put a(n) = 0, if n<0. - Vladimir Shevelev, May 21 2010
a(n) = floor(((n+1) mod 6)/3) + 2*floor(((n+5) mod 6)/5). - Gary Detlefs, Feb 15 2014
From Wesley Ivan Hurt, Aug 27 2014: (Start)
G.f.: (2+2*x+x^2)/(1+x-x^3-x^4).
a(n) + a(n-1) = a(n-3) + a(n-4) for n>4.
a(n) = (1 + floor((n-3)^2/2)) mod 3. (End)
a(n) = (5 + 3*cos(n*Pi) + 4*cos(2*n*Pi/3))/6. - Wesley Ivan Hurt, Jun 19 2016
From Amiram Eldar, Sep 16 2023: (Start)
Additive with a(p^e) = 1 if p <= 3, and 0 otherwise.
a(n) = A059841(n) + A079978(n).
a(n) = A001221(A089128(n)).
a(n) = A001221(A065331(n)). (End)

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010

A178143 Sum of squares d^2 over the divisors d=2 and/or d=3 of n.

Original entry on oeis.org

0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4, 0, 13, 0, 4, 9, 4
Offset: 1

Views

Author

Vladimir Shevelev, May 21 2010

Keywords

Comments

Period 6: repeat [0, 4, 9, 4, 0, 13]. - Wesley Ivan Hurt, Jul 05 2016

Examples

			a(1)=0, a(2)=2^2=4 since 2|2, a(3)=3^2=9 since 3|3, a(4)=2^2=4 since 2|4.
		

Crossrefs

Programs

Formula

a(n) = Sum_{d|n, d=2 and/or d=3} d^2.
a(n) = -a(n-1) + a(n-3) + a(n-4) for n>4.
G.f.: x*(4+13*x+13*x^2) / ( (1-x)*(1+x)*(1+x+x^2) ).
a(n+6) = a(n).
a(n) = A010675(n) + A021115(n). [R. J. Mathar, May 28 2010]
a(n) = 4 * (1 + floor(n/2) - ceiling(n/2)) + 9 * (1 + floor(n/3) - ceiling(n/3)). - Wesley Ivan Hurt, May 20 2013
a(n) = 5 + 2*cos(n*Pi) + 6*cos(2*n*Pi/3). - Wesley Ivan Hurt, Jul 05 2016

Extensions

Replaced recurrence by a shorter one; added keyword:less - R. J. Mathar, May 28 2010

A178144 Sum of divisors d of n which are d=2, 3 or 5.

Original entry on oeis.org

0, 2, 3, 2, 5, 5, 0, 2, 3, 7, 0, 5, 0, 2, 8, 2, 0, 5, 0, 7, 3, 2, 0, 5, 5, 2, 3, 2, 0, 10, 0, 2, 3, 2, 5, 5, 0, 2, 3, 7, 0, 5, 0, 2, 8, 2, 0, 5, 0, 7, 3, 2, 0, 5, 5, 2, 3, 2, 0, 10, 0, 2, 3, 2, 5, 5, 0, 2, 3, 7, 0, 5, 0, 2, 8, 2, 0, 5, 0, 7, 3, 2, 0, 5, 5, 2, 3, 2, 0, 10, 0, 2, 3, 2, 5, 5, 0, 2, 3, 7, 0, 5, 0, 2, 8
Offset: 1

Views

Author

Vladimir Shevelev, May 21 2010

Keywords

Comments

The sequence is periodic with period length 30.

Crossrefs

Programs

  • Maple
    A178144 := proc(n)
        local a;
        a := 0 ;
        for d in {2,3,5} do
            if (n mod d) = 0 then
                a := a+d ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jul 23 2012
  • Mathematica
    a[n_] := DivisorSum[n, Boole[MatchQ[#, 2|3|5]]*#&];
    Array[a, 105] (* Jean-François Alcover, Nov 24 2017 *)
    a[n_] := Sum[d * Boole[Divisible[n, d]], {d, {2, 3, 5}}]; Array[a, 100] (* Amiram Eldar, Dec 20 2024 *)
  • PARI
    a(n) = sumdiv(n, d, if ((d==2) || (d==3) || (d==5), d)); \\ Michel Marcus, Nov 24 2017
    
  • PARI
    a(n) = my(d = [2, 3, 5]); sum(k = 1, 3, d[k] * !(n % d[k])); \\ Amiram Eldar, Dec 20 2024

Formula

From R. J. Mathar, Jul 23 2012: (Start)
a(n) = -2*a(n-1) -2*a(n-2) -a(n-3) +a(n-5) +2*a(n-6) +2*a(n-7) +a(n-8).
G.f.: ( -x*(2+7*x+12*x^2+17*x^3+22*x^4+10*x^6+20*x^5) ) / ( (x-1)*(1+x)*(1+x+x^2)*(x^4+x^3+x^2+x+1) ). (End)

A178146 a(n) is the number of distinct prime factors <= 5 of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2
Offset: 1

Views

Author

Vladimir Shevelev, May 21 2010

Keywords

Comments

The sequence is periodic with period {0 1 1 1 1 2 0 1 1 2 0 2 0 1 2 1 0 2 0 2 1 1 0 2 1 1 1 1 0 3} of length 30. There are 26 coincidences on the interval [1,30] with A156542.

Crossrefs

Number of distinct prime factors <= p: A171182 (p=3), this sequence (p=5), A210679 (p=7).

Programs

  • Mathematica
    Rest@ CoefficientList[Series[-x^2*(3*x^6 + 6*x^5 + 7*x^4 + 6*x^3 + 5*x^2 + 3*x + 1)/((x - 1)*(x + 1)*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* G. C. Greubel, May 16 2017 *)
    LinearRecurrence[{-2,-2,-1,0,1,2,2,1},{0,1,1,1,1,2,0,1},120] (* Harvey P. Dale, Sep 29 2021 *)
    a[n_] := PrimeNu[GCD[n, 30]]; Array[a, 100] (* Amiram Eldar, Sep 16 2023 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(-x^2*(3*x^6+6*x^5+7*x^4+6*x^3+5*x^2+3*x+1)/((x-1)*(x+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)))) \\ G. C. Greubel, May 16 2017
    
  • PARI
    a(n) = omega(gcd(n, 30)); \\ Amiram Eldar, Sep 16 2023

Formula

a(n) = a(n-2) + a(n-3) - a(n-7) - a(n-8) + a(n-10), a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 1, a(5) = 1, a(6) = 2, a(7) = 0, a(8) = 1, a(9) = 1, a(10) = 2.
G.f.: -x^2*(3*x^6+6*x^5+7*x^4+6*x^3+5*x^2+3*x+1) / ((x-1)*(x+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Mar 13 2013
From Amiram Eldar, Sep 16 2023: (Start)
Additive with a(p^e) = 1 if p <= 5, and 0 otherwise.
a(n) = A059841(n) + A079978(n) + A079998(n).
a(n) = A001221(gcd(n, 30)).
a(n) = A001221(A355582(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 31/30. (End)

Extensions

Name edited by Amiram Eldar, Sep 16 2023

A171405 Sum of divisors of n, excluding divisors 2 and 3.

Original entry on oeis.org

1, 1, 1, 5, 6, 7, 8, 13, 10, 16, 12, 23, 14, 22, 21, 29, 18, 34, 20, 40, 29, 34, 24, 55, 31, 40, 37, 54, 30, 67, 32, 61, 45, 52, 48, 86, 38, 58, 53, 88, 42, 91, 44, 82, 75, 70, 48, 119, 57, 91, 69, 96, 54, 115, 72, 118, 77, 88, 60, 163, 62, 94, 101, 125, 84, 139, 68, 124, 93, 142
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 07 2009, Apr 20 2010

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, n] - {0,2,3,2,0,5}[[Mod[n-1, 6] + 1]]; Array[a, 100] (* Amiram Eldar, Aug 03 2024 *)
  • PARI
    a(n) = sigma(n) - [0,2,3,2,0,5][(n-1) % 6 + 1]; \\ Amiram Eldar, Aug 03 2024

Formula

a(n) = A000203(n) - A178142(n). - Amiram Eldar, Aug 03 2024

Extensions

Definition and some values corrected by R. J. Mathar, Jun 07 2010

A178147 Sum of squares d^2 of distinct divisors of n, d in {2, 3, 5}.

Original entry on oeis.org

0, 4, 9, 4, 25, 13, 0, 4, 9, 29, 0, 13, 0, 4, 34, 4, 0, 13, 0, 29, 9, 4, 0, 13, 25, 4, 9, 4, 0, 38, 0, 4, 9, 4, 25, 13, 0, 4, 9, 29, 0, 13, 0, 4, 34, 4, 0, 13, 0, 29, 9, 4, 0, 13, 25, 4, 9, 4, 0, 38, 0, 4, 9, 4, 25, 13, 0, 4, 9, 29, 0, 13, 0, 4, 34, 4, 0, 13, 0
Offset: 1

Views

Author

Vladimir Shevelev, May 21 2010, May 23 2010

Keywords

Comments

The sequence is periodic with period {0 4 9 4 25 13 0 4 9 29 0 13 0 4 34 4 0 13 0 29 9 4 0 13 25 4 9 4 0 38} of length 30.
A generalization: let B={b_1,...,b_t} be a set of t positive (not necessarily distinct) integers and m>=0 an integer.
For m>=0, let A(n)=Sum d^m over divisors d of n which are elements of B (with the multiplicities as in B). Calculating directly values of
A(b_i),A(b_i+b_j),A(b_i+b_j+b_k),...,
A(b_1+...+b_t), for the other values of A(n) we have the recursion:
A(n)=Sum{1<=i<=t}A(n-b_i)- Sum{1<=i

Crossrefs

Formula

a(n)= a(n-2) +a(n-3) -a(n-7)- a(n-8) +a(n-10), n>10.
By the comment, up to 10 it is sufficient to
calculate directly only values a(2)=4, a(3)=9, a(5)=25, a(7)=0, a(8)=4, a(10)=29.
For other n's we can use the recursion, accepting formally a(n)=0 for n<0. So a(1)=0; a(4)=a(2)+a(1)=4;a(6)=a(4)+a(3)=4+9=13,
a(9)=a(7)+a(6)-a(2)-a(1)=0+13-4+0=9.
a(n) = -2*a(n-1) -2*a(n-2) -a(n-3) +a(n-5) +2*a(n-6) +2*a(n-7) +a(n-8). - R. J. Mathar, Jul 13 2010
G.f. -x^2*(4+17*x+30*x^2+55*x^3+80*x^4+38*x^6+76*x^5) / ( (x-1)*(1+x)*(1+x+x^2)*(x^4+x^3+x^2+x+1) ). - R. J. Mathar, Dec 17 2012
Showing 1-6 of 6 results.