cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A159469 Maximum remainder when (k + 1)^n + (k - 1)^n is divided by k^2 for variable n and k > 2.

Original entry on oeis.org

6, 8, 20, 24, 42, 48, 72, 80, 110, 120, 156, 168, 210, 224, 272, 288, 342, 360, 420, 440, 506, 528, 600, 624, 702, 728, 812, 840, 930, 960, 1056, 1088, 1190, 1224, 1332, 1368, 1482, 1520, 1640, 1680, 1806, 1848, 1980, 2024, 2162, 2208, 2352, 2400, 2550, 2600
Offset: 3

Views

Author

Gaurav Kumar, Apr 13 2009

Keywords

Examples

			For n = 3, maxr => 3*3 - 3 = 6 since 3 is odd.
For n = 4, maxr => 4*4 - 2*4 = 8 since 4 is even.
		

Crossrefs

Cf. A050187.

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{6,8,20,24,42},50] (* Harvey P. Dale, Apr 18 2018 *)
  • PARI
    a(n) = if (n % 2, n^2 - n, n^2 - 2*n); \\ Michel Marcus, Aug 26 2013
    
  • PARI
    first(n) = Vec(x^3*(-6-2*x)/((x+1)^2*(x-1)^3) + O(x^(n+3))) \\ Iain Fox, Nov 26 2017

Formula

maxr(n) = n*n - 2*n if n is even, and n*n - n if n is odd.
G.f.: x^3*(-6-2*x)/((x+1)^2*(x-1)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009 (proved by Iain Fox, Nov 26 2017)
a(n) = 2*A050187(n). - R. J. Mathar, Aug 08 2009 (proved by Iain Fox, Nov 27 2017)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 7. - Colin Barker, Oct 29 2017 (proved by Iain Fox, Nov 26 2017)
a(n) = n^2 - n*(3 + (-1)^n)/2. - Iain Fox, Nov 26 2017
From Iain Fox, Nov 27 2017: (Start)
a(n) = A000290(n) - A022998(n).
a(n) = 2*A093005(n-2) + A168273(n-1).
a(n) = (4*(A152749(n-2)) + A091574(n-1) - A010719(n-1))/3.
E.g.f.: x*(exp(x)*x - sinh(x)).
(End)

A176323 Decimal expansion of (10+sqrt(110))/4.

Original entry on oeis.org

5, 1, 2, 2, 0, 2, 2, 1, 2, 0, 4, 2, 5, 3, 7, 8, 8, 6, 7, 4, 7, 8, 6, 3, 3, 7, 8, 4, 1, 9, 9, 8, 4, 3, 9, 9, 6, 1, 8, 8, 1, 7, 9, 6, 4, 4, 2, 0, 3, 7, 5, 9, 9, 6, 2, 1, 8, 9, 3, 8, 9, 4, 0, 8, 9, 5, 0, 0, 1, 4, 8, 1, 3, 7, 5, 2, 7, 5, 1, 7, 2, 8, 5, 4, 8, 4, 6, 3, 2, 2, 2, 3, 3, 2, 9, 8, 6, 0, 4, 4, 5, 0, 9, 9, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of (10+sqrt(110))/4 is A010719.

Examples

			5.12202212042537886747...
		

Crossrefs

Cf. A176221 (decimal expansion of sqrt(110)), A010719 (repeat 5, 8).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (10+Sqrt(110))/4; // G. C. Greubel, Dec 05 2019
    
  • Maple
    evalf( (10+sqrt(110))/4, 100); # G. C. Greubel, Dec 05 2019
  • Mathematica
    RealDigits[(10+Sqrt[110])/4,10,120][[1]] (* Harvey P. Dale, Jun 09 2016 *)
  • PARI
    default(realprecision, 100); (10+sqrt(110))/4 \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    numerical_approx((10+sqrt(110))/4, digits=100) # G. C. Greubel, Dec 05 2019

A136188 Digital roots of the Fermat numbers in A000215(n).

Original entry on oeis.org

3, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8
Offset: 0

Views

Author

Ant King, Dec 24 2007

Keywords

Comments

As 2^(2^n)+1=5 (mod 9) for odd values of n and 2^(2^n)+1=8 (mod 9) for even values of n>0, it follows that the digital roots of the Fermat numbers form a cyclic sequence, with the 5's corresponding to odd values of n and the 8's to even values of n.
Decimal expansion of 71/198. - Enrique Pérez Herrero, Nov 13 2021

Examples

			2^(2^3) + 1 = 257. This has digital root 5 and hence a(3) = 5.
		

Crossrefs

Essentially the same as A010719.

Programs

  • Mathematica
    FermatNumber[n_]:=2^(2^n)+1;DigitalRoot[n_]:=FixedPoint[Plus@@IntegerDigits[ # ]&,n];DigitalRoot/@(FermatNumber[ # ] &/@Range[0,25])
  • PARI
    a(n)=if(n,if(n%2,5,8),3) \\ Charles R Greathouse IV, May 01 2016

Formula

a(n) = A010888(A000215(n)).

A176455 Decimal expansion of (20+2*sqrt(110))/5.

Original entry on oeis.org

8, 1, 9, 5, 2, 3, 5, 3, 9, 2, 6, 8, 0, 6, 0, 6, 1, 8, 7, 9, 6, 5, 8, 1, 4, 0, 5, 4, 7, 1, 9, 7, 5, 0, 3, 9, 3, 9, 0, 1, 0, 8, 7, 4, 3, 0, 7, 2, 6, 0, 1, 5, 9, 3, 9, 5, 0, 3, 0, 2, 3, 0, 5, 4, 3, 2, 0, 0, 2, 3, 7, 0, 2, 0, 0, 4, 4, 0, 2, 7, 6, 5, 6, 7, 7, 5, 4, 1, 1, 5, 5, 7, 3, 2, 7, 7, 7, 6, 7, 1, 2, 1, 5, 8, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 20 2010

Keywords

Comments

Continued fraction expansion of (20+2*sqrt(110))/5 is A010719 preceded by 8.

Examples

			(20+2*sqrt(110))/5 = 8.19523539268060618796...
		

Crossrefs

Cf. A176221 (decimal expansion of sqrt(110)), A010719 (repeat 5, 8).
Showing 1-4 of 4 results.