cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002348 Degree of rational Poncelet porism of n-gon.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 15, 16, 21, 24, 24, 32, 36, 36, 45, 48, 48, 60, 66, 64, 75, 84, 81, 96, 105, 96, 120, 128, 120, 144, 144, 144, 171, 180, 168, 192, 210, 192, 231, 240, 216, 264, 276, 256, 294, 300, 288, 336, 351, 324, 360, 384, 360, 420, 435, 384, 465
Offset: 3

Views

Author

Keywords

Examples

			For a triangle the degree is 1, thus a(3) = 1. - _Michael Somos_, Dec 07 2018
		

References

  • Kerawala, S. M.; Poncelet Porism in Two Circles. Bull. Calcutta Math. Soc. 39, 85-105, 1947.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002348 n = product (zipWith d ps es) * 4 ^ e0 `div` 8 where
       d p e = (p ^ 2 - 1) * p ^ e
       e0 = if even n then head $ a124010_row n else 0
       es = map ((* 2) . subtract 1) $
                if even n then tail $ a124010_row n else a124010_row n
       ps = if even n then tail $ a027748_row n else a027748_row n
    -- Reinhard Zumkeller, Mar 18 2012
  • Mathematica
    Poncelet[ n_Integer /; n >= 3 ] := Module[ {p, a, i}, {p, a}=Transpose[ FactorInteger[ n ] ];
    If[ p[[1]]==2, 4^a[[1]] Product[ p[[i]]^(2(a[[i]] - 1))(p[[i]]^2 - 1), {i, 2, Length[ p ]} ]/8, (* Else *) Product[ p[[i]]^(2(a[[i]] - 1))(p[[i]]^2 - 1), {i, Length[ p ]} ]/8 ] ]
  • PARI
    {a(n) = my(p, e); if( n<3, 0, p=factor(n)~; e=p[2,]; p=p[1,]; if( p[1]==2, 4^e[1], 1) * prod(i=1 + (p[1]==2), length(p), p[i]^(2*(e[i] - 1)) * (p[i]^2 - 1)) / 8)}; /* Michael Somos, Dec 09 1999 */
    

Formula

From Ridouane Oudra, Jul 19 2025: (Start)
a(n) = (1/8) * Sum_{k=0..A007814(n)} A007434(n/2^k).
a(n) = (1/8) * Sum_{d|n} A209229(d)*A007434(n/d).
a(n) = (1/8) * Sum_{d|n} A328407(d)*mu(n/d).
a(n) = (n^2/8) * Prod_{p|n, p prime > 2} (1 - 1/p^2).
a(n) = (1/8) * 4^A007814(n) * A007434(A000265(n)).
a(n) = A007434(n)/A010724(n). (End)

Extensions

Extended with Mathematica program by Eric W. Weisstein

A176401 Decimal expansion of (6+sqrt(39))/2.

Original entry on oeis.org

6, 1, 2, 2, 4, 9, 8, 9, 9, 9, 1, 9, 9, 1, 9, 9, 1, 0, 2, 9, 2, 3, 4, 4, 6, 5, 6, 0, 4, 6, 9, 8, 9, 7, 2, 3, 0, 5, 3, 6, 4, 7, 9, 9, 8, 8, 9, 9, 5, 8, 2, 8, 1, 5, 4, 2, 2, 6, 4, 8, 5, 9, 6, 5, 3, 0, 4, 8, 0, 5, 6, 0, 0, 2, 9, 1, 7, 5, 7, 2, 5, 0, 3, 1, 6, 6, 6, 8, 0, 5, 6, 1, 1, 0, 6, 7, 0, 2, 9, 3, 5, 5, 3, 9, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 17 2010

Keywords

Comments

Continued fraction expansion of (6+sqrt(39))/2 is A010724.

Examples

			(6+sqrt(39))/2 = 6.12249899919919910292...
		

Crossrefs

Cf. A010493 (decimal expansion of sqrt(39)), A010724 (repeat 6, 8).

A176456 Decimal expansion of (12+2*sqrt(39))/3.

Original entry on oeis.org

8, 1, 6, 3, 3, 3, 1, 9, 9, 8, 9, 3, 2, 2, 6, 5, 4, 7, 0, 5, 6, 4, 5, 9, 5, 4, 1, 3, 9, 5, 9, 8, 6, 2, 9, 7, 4, 0, 4, 8, 6, 3, 9, 9, 8, 5, 3, 2, 7, 7, 7, 0, 8, 7, 2, 3, 0, 1, 9, 8, 1, 2, 8, 7, 0, 7, 3, 0, 7, 4, 1, 3, 3, 7, 2, 2, 3, 4, 3, 0, 0, 0, 4, 2, 2, 2, 2, 4, 0, 7, 4, 8, 1, 4, 2, 2, 7, 0, 5, 8, 0, 7, 1, 8, 8
Offset: 1

Views

Author

Klaus Brockhaus, Apr 20 2010

Keywords

Comments

Continued fraction expansion of (12+2*sqrt(39))/3 is A010724 preceded by 8.

Examples

			(12+2*sqrt(39))/3 = 8.16333199893226547056...
		

Crossrefs

Cf. A010493 (decimal expansion of sqrt(39)), A010724 (repeat 6, 8).

Programs

  • Mathematica
    RealDigits[(12+2*Sqrt[39])/3,10,120][[1]] (* Harvey P. Dale, Mar 08 2018 *)

A374921 Irregular triangle read by rows: T(n,k), n >= 0, k >= 1, in which if n is even then row n lists the first A008619(n) even indexed terms of A027336 otherwise if n is odd then row n lists the first A008619(n) odd indexed terms of A027336.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 4, 1, 1, 3, 6, 1, 2, 4, 8, 1, 1, 3, 6, 11, 1, 2, 4, 8, 15, 1, 1, 3, 6, 11, 20, 1, 2, 4, 8, 15, 26, 1, 1, 3, 6, 11, 20, 35, 1, 2, 4, 8, 15, 26, 45, 1, 1, 3, 6, 11, 20, 35, 58, 1, 2, 4, 8, 15, 26, 45, 75, 1, 1, 3, 6, 11, 20, 35, 58, 96, 1, 2, 4, 8, 15, 26, 45, 75, 121
Offset: 0

Views

Author

Omar E. Pol, Aug 01 2024

Keywords

Comments

The sum of row n equals the number of partitions of n.

Examples

			Triangle begins:
  1;
  1;
  1, 1;
  1, 2;
  1, 1, 3;
  1, 2, 4;
  1, 1, 3, 6;
  1, 2, 4, 8;
  1, 1, 3, 6, 11;
  1, 2, 4, 8, 15;
  1, 1, 3, 6, 11, 20;
  1, 2, 4, 8, 15, 26;
  1, 1, 3, 6, 11, 20, 35;
  1, 2, 4, 8, 15, 26, 45;
  1, 1, 3, 6, 11, 20, 35, 58;
  1, 2, 4, 8, 15, 26, 45, 75;
  1, 1, 3, 6, 11, 20, 35, 58, 96;
  1, 2, 4, 8, 15, 26, 45, 75, 121;
  ...
For n = 10 the sum of the 10th row is 1 + 1 + 3 + 6 + 11 + 20 = 42, the same as the number of partitions of 10.
		

Crossrefs

Row sums give A000041.
Row lengths give A008619.
Right border gives A027336.
Columns 1..4: A000012, A000034, A010702, A010724.
Showing 1-4 of 4 results.