A010741
Shifts 3 places left under inverse binomial transform.
Original entry on oeis.org
1, 2, 4, 1, 1, 1, -6, 14, -25, 32, 6, -250, 1222, -4380, 13059, -31705, 48464, 76354, -1159911, 7041015, -33400183, 135931668, -473704510, 1277600695, -1233828142, -16196871172, 169736941512, -1156974034428, 6577630531262, -32839667759307, 142900400342885
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..704
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
-
a:= proc(n) option remember; (m-> `if`(m<0, 2^n,
add(a(m-j)*binomial(m, j)*(-1)^j, j=0..m)))(n-3)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Feb 02 2022
-
a[n_] := a[n] = With[{m = n - 3}, If[m < 0, 2^n,
Sum[a[m - j]*Binomial[m, j]*(-1)^j, {j, 0, m}]]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)
A010743
Shifts 4 places left under inverse binomial transform.
Original entry on oeis.org
1, 2, 4, 8, 1, 1, 1, 1, -14, 45, -101, 189, -331, 668, -1932, 7206, -27779, 101365, -347439, 1139851, -3690766, 12258863, -43341845, 166059261, -682516519, 2930522990, -12823188092, 56366526324, -247898684759, 1094571175769, -4890163717903, 22310147976797
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..740
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
-
a:= proc(n) option remember; (m-> `if`(m<0, 2^n,
add(a(m-j)*binomial(m, j)*(-1)^j, j=0..m)))(n-4)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Feb 02 2022
-
a[n_] := a[n] = Function[m, If[m < 0, 2^n, Sum[a[m - j]* Binomial[m, j]*(-1)^j, {j, 0, m}]]][n - 4];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 08 2023, after Alois P. Heinz *)
A010745
Shifts 5 places left under inverse binomial transform.
Original entry on oeis.org
1, 2, 4, 8, 16, 1, 1, 1, 1, 1, -30, 124, -336, 734, -1401, 2404, -3485, 2212, 14630, -105408, 497131, -1995782, 7265342, -24576128, 77966104, -231218343, 626012198, -1430352680, 1894959964, 6114950887, -73791743479, 472896657475, -2523776826105, 12272646042530
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..775
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
-
a:= proc(n) option remember; (m-> `if`(m<0, 2^n,
add(a(m-j)*binomial(m, j)*(-1)^j, j=0..m)))(n-5)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Feb 02 2022
-
a[n_] := a[n] = Function[m, If[m < 0, 2^n, Sum[a[m-j]*Binomial[m, j]*(-1)^j, {j, 0, m}]]][n-5]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 13 2025, after Alois P. Heinz *)
A010747
Shifts 6 places left under inverse binomial transform.
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 1, 1, 1, 1, 1, 1, -62, 315, -1002, 2505, -5377, 10373, -18544, 32086, -60468, 154687, -567986, 2422043, -10225382, 40740231, -152497274, 539809668, -1822828757, 5928049329, -18782176673, 58918636670, -187382010256, 623524250516
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..802
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
-
a:= proc(n) option remember; (m-> `if`(m<0, 2^n,
add(a(m-j)*binomial(m, j)*(-1)^j, j=0..m)))(n-6)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Feb 02 2022
-
a[n_] := a[n] = Function[m, If[m < 0, 2^n, Sum[a[m - j]* Binomial[m, j]*(-1)^j, {j, 0, m}]]][n - 6];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 08 2023, after Alois P. Heinz *)
A350456
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 2*x)) / (1 + 2*x).
Original entry on oeis.org
1, 1, 1, -1, 1, -3, 17, -85, 385, -1767, 8929, -50633, 312705, -2036267, 13794417, -97295069, 717808897, -5549714767, 44868094145, -377741383697, 3298933836033, -29813463964115, 278462029910993, -2685972391332837, 26733375327601281, -274247228584531767
Offset: 0
-
nmax = 25; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 2 x)]/(1 + 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-2)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
A351184
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 3*x)) / (1 + 3*x).
Original entry on oeis.org
1, 1, 1, -2, 4, -11, 55, -359, 2359, -15230, 100840, -716555, 5580145, -47230091, 425472229, -4013326982, 39379161136, -402010392971, 4279164575167, -47533936734179, 550239127112107, -6618018093867506, 82447377648018700, -1061324336149876667, 14095604842846277617
Offset: 0
-
nmax = 24; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 3 x)]/(1 + 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-3)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 24}]
A351185
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 4*x)) / (1 + 4*x).
Original entry on oeis.org
1, 1, 1, -3, 9, -31, 153, -1075, 8689, -72031, 605201, -5282051, 49239225, -497094079, 5410919273, -62597718643, 759331611489, -9586004915007, 125701843190689, -1713676634245251, 24313707650733289, -358906747784541151, 5502327502961296825, -87382907614533531443
Offset: 0
-
nmax = 23; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 4 x)]/(1 + 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-4)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 23}]
A351186
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 5*x)) / (1 + 5*x).
Original entry on oeis.org
1, 1, 1, -4, 16, -69, 371, -2719, 24691, -243804, 2479276, -25931249, 284075601, -3320433179, 41744590941, -561939568544, 8008026088996, -119496752915869, 1854697111334891, -29870689367146379, 499291484226079551, -8668202648905259624, 156301404533216141576
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 5 x)]/(1 + 5 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-5)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
A351187
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 6*x)) / (1 + 6*x).
Original entry on oeis.org
1, 1, 1, -5, 25, -131, 793, -6137, 60049, -670919, 7930321, -96775853, 1225237609, -16333089227, 232150489129, -3531321746465, 57178717416097, -975918663642767, 17400776511175201, -322309002081819221, 6188520430773389881, -123166171374344928275, 2542231599282355411897
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 6 x)]/(1 + 6 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-6)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
A379781
a(1)=1, a(2)=2; thereafter, a(n) is the final value at the bottom of the difference triangle of the sequence thus far.
Original entry on oeis.org
1, 2, 1, -2, 0, 7, -14, -12, 155, -408, -364, 7693, -30940, 10712, 637701, -4224222, 9980180, 61922567, -810337234, 4100137008, -958593005, -174952472228, 1662063951016, -6944673371867, -22887336602200, 655644589917172, -5694691183524699, 19946666531550638, 176993602416669640
Offset: 1
To find a(6), we look at the first difference triangle of the first 5 terms:
1, 2, 1, -2, 0
1, -1, -3, 2
-2, -2, 5
0, 7
7
7 is the final value, so a(6)=7.
-
a[1] = 1; a[2] = 2; a[n_] := a[n] = Sum[(-1)^(n-k+1) * Binomial[n-2, k-1] * a[k], {k, 1, n-1}]; Table[a[n], {n, 1, 30}] (* Amiram Eldar, Jan 04 2025 *)
Showing 1-10 of 10 results.
Comments