cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010801 13th powers: a(n) = n^13.

Original entry on oeis.org

0, 1, 8192, 1594323, 67108864, 1220703125, 13060694016, 96889010407, 549755813888, 2541865828329, 10000000000000, 34522712143931, 106993205379072, 302875106592253, 793714773254144, 1946195068359375, 4503599627370496, 9904578032905937, 20822964865671168
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A000584 (5th powers), A008455 (11th powers), A013671 (zeta(11)).

Programs

Formula

a(n) mod 10 = n mod 10. - Reinhard Zumkeller, Dec 06 2004
Totally multiplicative with a(p) = p^13 for primes p. Multiplicative with a(p^e) = p^(13*e). - Jaroslav Krizek, Nov 01 2009
G.f.: x*(x^12 + 8178*x^11 + 1479726*x^10 + 45533450*x^9 + 423281535*x^8 + 1505621508*x^7 + 2275172004*x^6 + 1505621508*x^5 + 423281535*x^4 + 45533450*x^3 + 1479726*x^2 + 8178*x + 1) / (x - 1)^14. - Colin Barker, Sep 25 2014
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(13) (A013671).
Sum_{n>=1} (-1)^(n+1)/a(n) = 4095*zeta(13)/4096. (End)