cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A155016 Integer part of square root of A010801.

Original entry on oeis.org

0, 1, 90, 1262, 8192, 34938, 114283, 311269, 741455, 1594323, 3162277, 5875603, 10343751, 17403307, 28172943, 44115700, 67108864, 99521746, 144301645, 205068240, 286216701, 393029741, 531798888, 709955183, 936209559, 1220703125
Offset: 0

Views

Author

Keywords

Crossrefs

Integer part of square root of n^k: A000196 (k=1), A000093 (k=3), A155013 (k=5), A155014 (k=7), A155015 (k=11), this sequence (k=13), A155018 (k=15), A155019 (k=17).

Programs

  • Magma
    [Floor(Sqrt(n^13)): n in [1..30]]; // G. C. Greubel, Dec 30 2017
  • Mathematica
    a={};Do[AppendTo[a,IntegerPart[(n^13)^(1/2)]],{n,0,5!}];a
    Table[Floor[Sqrt[n^13]], {n,1,30}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=1,30, print1(floor(sqrt(n^13)), ", ")) \\ G. C. Greubel, Dec 30 2017
    

Extensions

Offset corrected by Karl V. Keller, Jr., Sep 27 2014

A253713 Second partial sums of 13th powers (A010801).

Original entry on oeis.org

1, 8194, 1610710, 70322090, 1359736595, 15709845116, 126948964044, 787943896860, 3990804658005, 17193665419150, 64919238324226, 219638016608374, 677231901484775, 1928540559615320, 5126044286105240, 12827147639965656, 30432829026732009, 68861475279169530, 149343104993864110, 311744734708558690, 628618742162372731
Offset: 1

Views

Author

Luciano Ancora, Jan 12 2015

Keywords

Comments

The formula for the second partial sums of m-th powers is: b(n,m) = (n+1)*F(m) - F(m+1), where F(m) are the m-th Faulhaber's formulas.

Programs

  • Magma
    [n*(n+1)*(n+2)*(6*n^12+72*n^11+297*n^10+330*n^9-765*n^8-1368*n^7+2059*n^6+2994*n^5-4091*n^4-2724*n^3+4069*n^2+66*n-735)/1260: n in [1..30]]; // Vincenzo Librandi, Jan 19 2015
  • Mathematica
    Table[n (n+1) (n+2) (6 n^12 + 72 n^11 + 297 n^10 + 330 n^9 - 765 n^8 - 1368 n^7 + 2059 n^6 + 2994 n^5 - 4091 n^4 -2724 n^3 + 4069 n^2 + 66 n - 735) / 1260, {n, 40}] (* Vincenzo Librandi, Jan 19 2015 *)
    Nest[Accumulate,Range[30]^13,2] (* Harvey P. Dale, Jul 24 2018 *)

Formula

a(n) = n*(n+1)*(n+2)*(6*n^12+72*n^11+297*n^10+330*n^9-765*n^8-1368*n^7+2059*n^6+2994*n^5-4091*n^4-2724*n^3+4069*n^2+66*n-735)/1260.
a(n) = 2*a(n-1)-a(n-2)+n^13.

A001016 Eighth powers: a(n) = n^8.

Original entry on oeis.org

0, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 43046721, 100000000, 214358881, 429981696, 815730721, 1475789056, 2562890625, 4294967296, 6975757441, 11019960576, 16983563041, 25600000000, 37822859361, 54875873536, 78310985281, 110075314176
Offset: 0

Views

Author

Keywords

Comments

Besides the first term, this sequence lists the denominators in Pi^8/9450 = 1 + 1/256 + 1/6561 + 1/65536 + 1/390625 + 1/1679616 + ... - Mohammad K. Azarian, Nov 01 2011, edited by M. F. Hasler, Jul 03 2025
For n > 0, a(n) is the largest number k such that k + n^4 divides k^2 + n^4. - Derek Orr, Oct 01 2014
Fourth powers of squares and squares of 4th powers. Squares composed with themselves twice. - Wesley Ivan Hurt, Apr 01 2016

References

  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), p. 982.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000290 (squares), A000583 (fourth powers), A001014 - A001017 (6th - 9th powers), A008454 (10th powers), A010801 (13th powers).
Cf. A000542 (partial sums), A022524 (first differences), A013666 (zeta(8)).
Cf. A003380 - A003390 (sums of 2, ..., 12 eighth powers).

Programs

Formula

Multiplicative with a(p^e) = p^(8e). - David W. Wilson, Aug 01 2001
Totally multiplicative sequence with a(p) = p^8 for primes p. - Jaroslav Krizek, Nov 01 2009
G.f.: -x*(1+x)*(x^6+246*x^5+4047*x^4+11572*x^3+4047*x^2+246*x+1)/(x-1)^9. - R. J. Mathar, Jan 07 2011
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) + 40320. - Ant King, Sep 24 2013
From Wesley Ivan Hurt, Apr 01 2016: (Start)
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n > 8.
a(n) = A000290(n)^4 = A000290(A000290(A000290(n))).
a(n) = A000583(n)^2. (End)
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(8) = Pi^8/9450 (A013666).
Sum_{n>=1} (-1)^(n+1)/a(n) = 127*zeta(8)/128 = 127*Pi^8/1209600. (End)
E.g.f.: exp(x)*x*(1 + 127*x + 966*x^2 + 1701*x^3 + 1050*x^4 + 266*x^5 + 28*x^6 + x^7). - Stefano Spezia, Jul 29 2022

Extensions

More terms from James Sellers, Sep 19 2000

A008456 12th powers: a(n) = n^12.

Original entry on oeis.org

0, 1, 4096, 531441, 16777216, 244140625, 2176782336, 13841287201, 68719476736, 282429536481, 1000000000000, 3138428376721, 8916100448256, 23298085122481, 56693912375296, 129746337890625, 281474976710656, 582622237229761
Offset: 0

Views

Author

Keywords

Comments

Numbers which are square, cubic and quartic. - Doug Bell, Jun 03 2017

Crossrefs

a(n) = A123868(n) + 1.
Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A001014 (6th powers), A008454 (10th powers), A008455 (11th powers), A010801 (13th powers).
Cf. A013670 (zeta(12)).

Programs

Formula

Multiplicative with a(p^e) = p^(12*e). - David W. Wilson, Aug 01 2001
a(n) = A000290(n)^6 = A000578(n)^4 = A000583(n)^3 = A001014(n)^2. - Doug Bell, Jun 03 2017
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(12) = 691*Pi^12/638512875 (A013670).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2047*zeta(12)/2048 = 1414477*Pi^12/1307674368000. (End)
a(n) = 13*a(n-1)-78*a(n-2)+286*a(n-3)-715*a(n-4)+1287*a(n-5)-1716*a(n-6)+1716*a(n-7)-1287*a(n-8)+715*a(n-9)-286*a(n-10)+78*a(n-11)-13*a(n-12)+a(n-13). - Wesley Ivan Hurt, Dec 02 2021
Intersection of A000578 and A000583; i.e., cubes and 4th powers. - M. F. Hasler, Jul 03 2025

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A244003 A(n,k) = k^Fibonacci(n); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 3, 4, 1, 0, 1, 5, 4, 9, 8, 1, 0, 1, 6, 5, 16, 27, 32, 1, 0, 1, 7, 6, 25, 64, 243, 256, 1, 0, 1, 8, 7, 36, 125, 1024, 6561, 8192, 1, 0, 1, 9, 8, 49, 216, 3125, 65536, 1594323, 2097152, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 17 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,   1,    1,     1,      1,       1, ...
  0, 1,   2,    3,     4,      5,       6, ...
  0, 1,   2,    3,     4,      5,       6, ...
  0, 1,   4,    9,    16,     25,      36, ...
  0, 1,   8,   27,    64,    125,     216, ...
  0, 1,  32,  243,  1024,   3125,    7776, ...
  0, 1, 256, 6561, 65536, 390625, 1679616, ...
		

Crossrefs

Rows n=0, 1+2, 3-8 give: A000012, A001477, A000290, A000578, A000584, A001016, A010801, A010809.
Main diagonal gives: A152915.

Programs

  • Maple
    A:= (n, k)-> k^(<<1|1>, <1|0>>^n)[1, 2]:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[0, 0] = 1; A[n_, k_] := k^Fibonacci[n]; Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 11 2015 *)

Formula

A(n,k) = k^A000045(n).
A(0,k) = 1, A(1,k) = k, A(n,k) = A(n-1,k) * A(n-2,k) for n>=2.

A138031 a(n) = prime(n)^13.

Original entry on oeis.org

8192, 1594323, 1220703125, 96889010407, 34522712143931, 302875106592253, 9904578032905937, 42052983462257059, 504036361936467383, 10260628712958602189, 24417546297445042591, 243569224216081305397, 925103102315013629321, 1718264124282290785243
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A010801 (13th powers).
Cf. A000040 (primes), A013671 (zeta(13)).

Programs

Formula

From Amiram Eldar, Jan 24 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(13)/zeta(26).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(13) = 1/A013671. (End)

Extensions

More terms from Vincenzo Librandi, Mar 27 2014

A089081 26th powers: a(n) = n^26.

Original entry on oeis.org

0, 1, 67108864, 2541865828329, 4503599627370496, 1490116119384765625, 170581728179578208256, 9387480337647754305649, 302231454903657293676544, 6461081889226673298932241, 100000000000000000000000000
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Dec 04 2003

Keywords

Crossrefs

Programs

Formula

a(n) = n^26.
Completely multiplicative sequence with a(p) = p^26 for prime p. Multiplicative sequence with a(p^e) = p^(26e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-26).
Sum_{n>=1} 1/a(n) = zeta(26) = 1315862*Pi^26/11094481976030578125.
Sum_{n>=1} (-1)^(n+1)/a(n) = 33554431*zeta(26)/33554432 = 22076500342261*Pi^26/186134520519971831808000000. (End)

A181134 Sum of 13th powers: a(n) = Sum_{j=0..n} j^13.

Original entry on oeis.org

0, 1, 8193, 1602516, 68711380, 1289414505, 14350108521, 111239118928, 660994932816, 3202860761145, 13202860761145, 47725572905076, 154718778284148, 457593884876401, 1251308658130545, 3197503726489920
Offset: 0

Views

Author

Bruno Berselli, Oct 05 2010 - Oct 18 2010

Keywords

Comments

This form of recurrence is a general property of the array in A103438 (sums of the first n-th powers).

Crossrefs

Cf. A010801.
Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), A123095 (m=11), A123094 (m=12), A181134 (m=13).

Programs

  • Magma
    [(&+[j^13: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
    
  • Maple
    A181134 := proc(n) (bernoulli(14,n+1) - bernoulli(14))/14 ; end proc: seq(A181134(n), n=0..10); # R. J. Mathar, Oct 14 2010
  • Mathematica
    Accumulate[Range[0,20]^13] (* Harvey P. Dale, Oct 30 2017 *)
  • Python
    A181134_list, m = [0], [6227020800, -37362124800, 97037740800, -142702560000, 130456085760, -76592355840, 28805736960, -6711344640, 901020120, -60780720, 1569750, -8190, 1, 0 , 0]
    for _ in range(10**2):
        for i in range(14):
            m[i+1]+= m[i]
        A181134_list.append(m[-1]) # Chai Wah Wu, Nov 06 2014
    
  • Sage
    [(bernoulli_polynomial(n+1, 14) - bernoulli(14))/14  for n in (0..30)] # G. C. Greubel, Jul 21 2021

Formula

For n>0, a(n) = n*A123094(n) - Sum_{i=0..n-1} A123094(i), where Sum_{i=0..n-1} A123094(i) = A253712(n-1) = (n-1)*n^2*(n+1)*(30*n^10 - 425*n^8 + 2578*n^6 - 8147*n^4 + 12874*n^2 - 7601)/5460.
a(n) = a(-n-1) = (n*(n + 1))^2*(30*n^10 + 150*n^9 + 125*n^8 - 400*n^7 - 326*n^6 + 1052*n^5 + 367*n^4 - 1786*n^3 + 202*n^2 + 1382*n - 691)/420.
G.f.: see comment of Vladeta Jovovic in A000538.
a(n) = -Sum_{j=1..13} j*Stirling1(n+1,n+1-j)*Stirling2(n+13-j,n). - Mircea Merca, Jan 25 2014

A022529 Nexus numbers (n+1)^13-n^13.

Original entry on oeis.org

1, 8191, 1586131, 65514541, 1153594261, 11839990891, 83828316391, 452866803481, 1992110014441, 7458134171671, 24522712143931, 72470493235141, 195881901213181, 490839666661891, 1152480295105231, 2557404559011121, 5400978405535441, 10918386832765231
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=12 of array A047969.

Programs

Formula

a(n) = A010801(n+1) - A010801(n). - Michel Marcus, Sep 25 2014
G.f.: -(x^12 +8178*x^11 +1479726*x^10 +45533450*x^9 +423281535*x^8 +1505621508*x^7 +2275172004*x^6 +1505621508*x^5 +423281535*x^4 +45533450*x^3 +1479726*x^2 +8178*x +1) / (x-1)^13. - Colin Barker, Sep 25 2014
G.f.: polylog(-13, x)*(1-x)/x. See the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021
Showing 1-10 of 12 results. Next