A030078
Cubes of primes.
Original entry on oeis.org
8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091, 2571353, 2685619, 3307949
Offset: 1
a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
- Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.
Other sequences that are k-th powers of primes are:
A000040 (k=1),
A001248 (k=2), this sequence (k=3),
A030514 (k=4),
A050997 (k=5),
A030516 (k=6),
A092759 (k=7),
A179645 (k=8),
A179665 (k=9),
A030629 (k=10),
A079395 (k=11),
A030631 (k=12),
A138031 (k=13),
A030635 (k=16),
A138032 (k=17),
A030637 (k=18).
A335988
Cubefull exponentially odd numbers: numbers whose prime factorization contains only odd exponents that are larger than 1.
Original entry on oeis.org
1, 8, 27, 32, 125, 128, 216, 243, 343, 512, 864, 1000, 1331, 1944, 2048, 2187, 2197, 2744, 3125, 3375, 3456, 4000, 4913, 6859, 7776, 8192, 9261, 10648, 10976, 12167, 13824, 16000, 16807, 17496, 17576, 19683, 24389, 25000, 27000, 29791, 30375, 31104, 32768, 35937
Offset: 1
8 = 2^3 is a term since the exponent of its prime factor 2 is 3 which is odd and larger than 1.
-
Join[{1}, Select[Range[10^5], AllTrue[Last /@ FactorInteger[#], #1 > 1 && OddQ[#1] &] &]]
-
from math import isqrt, prod
from sympy import factorint
def afind(N): # all terms up to limit N
cands = (n**2*prod(factorint(n**2)) for n in range(1, isqrt(N//2)+2))
return sorted(c for c in cands if c <= N)
print(afind(4*10**4)) # Michael S. Branicky, Jun 16 2022
A030632
Numbers with 14 divisors.
Original entry on oeis.org
192, 320, 448, 704, 832, 1088, 1216, 1458, 1472, 1856, 1984, 2368, 2624, 2752, 3008, 3392, 3645, 3776, 3904, 4288, 4544, 4672, 5056, 5103, 5312, 5696, 6208, 6464, 6592, 6848, 6976, 7232, 8019, 8128, 8192, 8384, 8768, 8896, 9477, 9536, 9664, 10048, 10432
Offset: 1
-
Select[Range[15000], DivisorSigma[0, #] == 14 &]
-
is(n)=numdiv(n)==14 \\ Charles R Greathouse IV, Jun 19 2016
-
from sympy import primepi, primerange, integer_nthroot
def A030632(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//p**6) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,7)[0])-primepi(integer_nthroot(x,13)[0])
return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025
A115975
Numbers of the form p^k, where p is a prime and k is a Fibonacci number.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233
Offset: 1
Subsequence of
A000961 (powers of primes).
-
With[{nn=60},Take[Join[{1},Union[First[#]^Last[#]&/@Union[Flatten[ Outer[List,Prime[Range[nn]],Fibonacci[Range[nn/6]]],1]]]],70]] (* Harvey P. Dale, Jun 05 2012 *)
fib[lim_] := Module[{s = {}, f = 1, k = 2}, While[f <= lim, AppendTo[s, f]; k++; f = Fibonacci[k]]; s]; seq[max_] := Module[{s = {1}, p = 2, e = 1, f = {}}, While[e > 0, e = Floor[Log[p, max]]; If[f == {}, f = fib[e], f = Select[f, # <= e &]]; s = Join[s, p^f]; p = NextPrime[p]]; Sort[s]]; seq[250] (* Amiram Eldar, Aug 09 2024 *)
-
{m=240;v=Set([]);forprime(p=2,m,i=0;while((s=p^fibonacci(i))
A319075
Square array T(n,k) read by antidiagonal upwards in which row n lists the n-th powers of primes, hence column k lists the powers of the k-th prime, n >= 0, k >= 1.
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 7, 1, 32, 81, 125, 49, 11, 1, 64, 243, 625, 343, 121, 13, 1, 128, 729, 3125, 2401, 1331, 169, 17, 1, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 1, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 1, 1024, 19683, 390625, 823543, 1771561, 371293
Offset: 0
The corner of the square array is as follows:
A000079 A000244 A000351 A000420 A001020 A001022 A001026
A000012 1, 1, 1, 1, 1, 1, 1, ...
A000040 2, 3, 5, 7, 11, 13, 17, ...
A001248 4, 9, 25, 49, 121, 169, 289, ...
A030078 8, 27, 125, 343, 1331, 2197, 4913, ...
A030514 16, 81, 625, 2401, 14641, 28561, 83521, ...
A050997 32, 243, 3125, 16807, 161051, 371293, 1419857, ...
A030516 64, 729, 15625, 117649, 1771561, 4826809, 24137569, ...
A092759 128, 2187, 78125, 823543, 19487171, 62748517, 410338673, ...
A179645 256, 6561, 390625, 5764801, 214358881, 815730721, 6975757441, ...
...
Rows 0-13:
A000012,
A000040,
A001248,
A030078,
A030514,
A050997,
A030516,
A092759,
A179645,
A179665,
A030629,
A079395,
A030631,
A138031.
Other rows n:
A030635 (n=16),
A030637 (n=18),
A137486 (n=22),
A137492 (n=28),
A139571 (n=30),
A139572 (n=36),
A139573 (n=40),
A139574 (n=42),
A139575 (n=46),
A173533 (n=52),
A183062 (n=58),
A183085 (n=60),
A261700 (n=100).
Columns 1-15:
A000079,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
A381312
Numbers whose powerful part (A057521) is a power of a prime with an odd exponent >= 3 (A056824).
Original entry on oeis.org
8, 24, 27, 32, 40, 54, 56, 88, 96, 104, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 224, 232, 243, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 352, 375, 376, 378, 384, 408, 416, 424, 440, 456, 459, 472, 480, 486, 488, 512, 513, 520, 536, 544
Offset: 1
Subsequences:
A030078,
A050997,
A056824,
A065036,
A079395,
A092759,
A138031,
A178740,
A179664,
A179665,
A179667,
A179670,
A179692,
A179696,
A179704,
A189975,
A189984,
A190378,
A190383,
A190473.
-
q[n_] := Module[{e = ReverseSort[FactorInteger[n][[;; , 2]]]}, e[[1]] > 1 && OddQ[e[[1]]] && (Length[e] == 1 || e[[2]] == 1)]; Select[Range[1000], q]
-
isok(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2], , 4)); e[1] % 2 && e[1] > 1 && (#e == 1 || e[2] == 1));
A336596
Numbers whose number of divisors is divisible by 7.
Original entry on oeis.org
64, 192, 320, 448, 576, 704, 729, 832, 960, 1088, 1216, 1344, 1458, 1472, 1600, 1728, 1856, 1984, 2112, 2240, 2368, 2496, 2624, 2752, 2880, 2916, 3008, 3136, 3264, 3392, 3520, 3645, 3648, 3776, 3904, 4032, 4160, 4288, 4416, 4544, 4672, 4800, 4928, 5056, 5103
Offset: 1
64 is a term since A000005(64) = 7 is divisible by 7.
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eckford Cohen, Arithmetical Notes, XIII. A Sequal to Note IV, Elemente der Mathematik, Vol. 18 (1963), pp. 8-11.
- S. S. Pillai, On a congruence property of the divisor function, J. Indian Math. Soc. (N. S.), Vol. 6, (1942), pp. 118-119.
- L. G. Sathe, On a congruence property of the divisor function, American Journal of Mathematics, Vol. 67, No. 3 (1945), pp. 397-406.
-
q:= n-> is(irem(numtheory[tau](n), 7)=0):
select(q, [$1..5500])[]; # Alois P. Heinz, Jul 26 2020
-
Select[Range[5000], Divisible[DivisorSigma[0, #], 7] &]
A376171
Powerful numbers whose prime factorization has an odd maximum exponent.
Original entry on oeis.org
8, 27, 32, 72, 108, 125, 128, 200, 216, 243, 288, 343, 392, 500, 512, 675, 800, 864, 968, 972, 1000, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1800, 1944, 2048, 2187, 2197, 2312, 2592, 2700, 2744, 2888, 3087, 3125, 3200, 3267, 3375, 3456, 3528, 3872, 3888, 4000
Offset: 1
-
seq[lim_] := Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, Surd[lim, 3]}, {i, 1, Sqrt[lim/j^3]}], # > 1 && OddQ[Max[FactorInteger[#][[;; , 2]]]] &]; seq[10^4]
-
is(k) = {my(f = factor(k), e = f[,2]); #e && ispowerful(f) && vecmax(e) % 2;}
A065985
Numbers k such that d(k) / 2 is prime, where d(k) = number of divisors of k.
Original entry on oeis.org
6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 125, 129, 133, 134
Offset: 1
-
Select[Range[1, 1000], PrimeQ[DivisorSigma[0, # ] / 2] == True &]
-
n=0; for (m=1, 10^9, f=numdiv(m)/2; if (frac(f)==0 && isprime(f), write("b065985.txt", n++, " ", m); if (n==1000, return))) \\ Harry J. Smith, Nov 05 2009
-
is(n)=n=numdiv(n)/2; denominator(n)==1 && isprime(n) \\ Charles R Greathouse IV, Oct 15 2015
A236221
Sum of the thirteenth powers of the first n primes.
Original entry on oeis.org
8192, 1602515, 1222305640, 98111316047, 34620823459978, 337495930052231, 10242073962958168, 52295057425215227, 556331419361682610, 10816960132320284799, 35234506429765327390, 278803730645846632787, 1203906832960860262108, 2922170957243151047351
Offset: 1
Cf.
A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
-
Table[Sum[Prime[k]^13, {k, n}], {n, 100}]
Showing 1-10 of 11 results.
Comments