cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A384913 The number of unordered factorizations of n into exponentially Fibonacci powers of primes (A115975).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 8, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 12 2025

Keywords

Comments

First differs from A384912 at n = 64.

Examples

			a(4) = 2 since 4 has 2 factorizations: 2^1 * 2^1 and 2^2, with exponents 1 and 2 that are Fibonacci numbers.
		

Crossrefs

Programs

  • Mathematica
    fib[n_] := Boole[Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]];
    s[n_] := s[n] = If[n == 0, 1, Sum[Sum[d * fib[d], {d, Divisors[j]}] * s[n-j], {j, 1, n}] / n];
    f[p_, e_] := s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
    s(n) = if(n < 1, 1, sum(j = 1, n, sumdiv(j, d, d*isfib(d)) * s(n-j))/n);
    a(n) = vecprod(apply(s, factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A003107(e).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 2.05893526314055968638..., where f(x) = (1-x) / Product_{k>=2} (1-x^A000045(k)).

A375428 The maximum exponent in the unique factorization of n in terms of distinct terms of A115975 using the Zeckendorf representation of the exponents in the prime factorization of n; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2024

Keywords

Comments

Differs from A095691 and A365552 at n = 1, 32, 36, 64, 72, 96, 100, ... . Differs from A368105 at n = 1, 36, 72, 100, 108, ... .
When the exponents in the prime factorization of n are expanded as sums of distinct Fibonacci numbers using the Zeckendorf representation (A014417), we get a unique factorization of n in terms of distinct terms of A115975, i.e., n is represented as a product of prime powers (A246655) whose exponents are Fibonacci numbers. a(n) is the maximum exponent of these prime powers. Thus all the terms are Fibonacci numbers.

Examples

			For n = 16 = 2^4, the Zeckendorf representation of 4 is 101, i.e., 4 = Fibonacci(2) + Fibonacci(4) = 1 + 3. Therefore 16 = 2^(1+3) = 2^1 * 2^3, and a(16) = 3.
		

Crossrefs

Programs

  • Mathematica
    A087172[n_] := Module[{k = 2}, While[Fibonacci[k] <= n, k++]; Fibonacci[k-1]]; a[n_] := A087172[Max[FactorInteger[n][[;;, 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    A087172(n) = {my(k = 2); while(fibonacci(k) <= n, k++); fibonacci(k-1);}
    a(n) = if(n == 1, 0, A087172(vecmax(factor(n)[,2])));

Formula

a(n) = A087172(A051903(n)) for n >= 2.
a(n) = A000045(A375429(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 - 1/zeta(2) + Sum_{k>=4} Fibonacci(k) * (1 - 1/zeta(Fibonacci(k))) = 1.64419054900327345836... .

A375430 The maximum exponent in the unique factorization of n in terms of distinct terms of A115975 using the dual Zeckendorf representation of the exponents in the prime factorization of n; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2024

Keywords

Comments

First differs from A299090 at n = 128. Differs from A046951 and A159631 at n = 1, 36, 64, 72, ... .
When the exponents in the prime factorization of n are expanded as sums of distinct Fibonacci numbers using the dual Zeckendorf representation (A104326), we get a unique factorization of n in terms of distinct terms of A115975, i.e., n is represented as a product of prime powers (A246655) whose exponents are Fibonacci numbers. a(n) is the maximum exponent of these prime powers. Thus all the terms are Fibonacci numbers.

Examples

			For n = 8 = 2^3, the dual Zeckendorf representation of 3 is 11, i.e., 3 = Fibonacci(2) + Fibonacci(3) = 1 + 2. Therefore 8 = 2^(1+2) = 2^1 * 2^2, and a(8) = 2.
		

Crossrefs

Programs

  • Mathematica
    A130312[n_] := Module[{k = 0}, While[Fibonacci[k] <= n, k++]; Fibonacci[k-2]]; a[n_] := A130312[1 + Max[FactorInteger[n][[;;, 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    A130312(n) = {my(k = 0); while(fibonacci(k) <= n, k++); fibonacci(k-2);}
    a(n) = if(n == 1, 0, A130312(1 + vecmax(factor(n)[,2])));

Formula

a(n) = A130312(1 + A051903(n)).
a(n) = A000045(A375431(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{k>=4} Fibonacci(k) * (1 - 1/zeta(Fibonacci(k)-1)) = 1.48543763231328442311... .

A117245 Partial sums of A115975.

Original entry on oeis.org

1, 3, 6, 10, 15, 22, 30, 39, 50, 63, 80, 99, 122, 147, 174, 203, 234, 266, 303, 344, 387, 434, 483, 536, 595, 656, 723, 794, 867, 946, 1029, 1118, 1215, 1316, 1419, 1526, 1635, 1748, 1869, 1994, 2121, 2252, 2389, 2528, 2677, 2828, 2985, 3148, 3315, 3484, 3657
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 23 2006

Keywords

Comments

Agrees with A024918 (partial sums of A000961) for the first ten terms.

Crossrefs

Programs

  • Mathematica
    Accumulate[seq[180]] (* Amiram Eldar, Jun 27 2025, using the function seq[max_] at A115975 *)
  • PARI
    {m=180;v=Set([]);forprime(p=2,m,i=0;while((s=p^fibonacci(i))
    				

Extensions

Edited, corrected and extended by Klaus Brockhaus, Apr 25 2006

A375269 Partial products of A115975.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 6720, 60480, 665280, 8648640, 147026880, 2793510720, 64250746560, 1606268664000, 43369253928000, 1257708363912000, 38988959281272000, 1247646697000704000, 46162927789026048000, 1892680039350067968000, 81385241692052922624000, 3825106359526487363328000
Offset: 1

Views

Author

Amiram Eldar, Aug 09 2024

Keywords

Comments

First differs from A334395 at n = 42.
Numbers with a record number of dual-Zeckendorf-infinitary divisors (A331109). Also, indices of records in A375272.
a(n) is the least number k such that A375272(k) = n-1 and A331109(k) = 2^(n-1).

Examples

			A115975 begins with 1, 2, 3, 4, 5, 7, ..., so, a(1) = 1, a(2) = 1 * 2 = 2, a(3) = 1 * 2 * 3 = 6, ..., a(6) = 1 * 2 * 3 * 4 * 5 * 7 = 840.
		

Crossrefs

Cf. A037992 (analogous with "Fermi-Dirac primes", A050376), A115975, A331109, A334395, A375271, A375272.
Subsequence of A025487.

Programs

  • Mathematica
    fib[lim_] := Module[{s = {}, f = 1, k = 2}, While[f <= lim, AppendTo[s, f]; k++; f = Fibonacci[k]]; s];
    seq[max_] := Module[{s = {}, p = 2, e = 1, f = {}}, While[e > 0, e = Floor[Log[p, max]]; If[f == {}, f = fib[e], f = Select[f, # <= e &]]; s = Join[s, p^f]; p = NextPrime[p]]; FoldList[Times, 1, Sort[s]]]; seq[250]
  • PARI
    fib(lim) = {my(s = List(), f = 1, k = 2); while(f <= lim, listput(s, f); k++; f = fibonacci(k)); Vec(s);}
    lista(pmax) = {my(s = [1], p = 2, e = 1, f = [], r = 1); while(e > 0, e = logint(pmax, p); if(#f == 0, f = fib(e), f = select(x -> x <= e, f)); s = concat(s, apply(x -> p^x, f)); p = nextprime(p+1)); s = vecsort(s); for(i = 1, #s, r *= s[i]; print1(r, ", "));}

Formula

a(n) = Product_{k=1..n} A115975(k).

A115063 Natural numbers of the form p^F(n_p)*q^F(n_q)*r^F(n_r)*...*z^F(n_z), where p,q,r,... are distinct primes and F(n) is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 01 2006

Keywords

Comments

The complementary sequence is 16, 48, 64, 80, 81, 112, 128, 144, 162, 176, 192, 208, 240, 272, 304, 320, 324, 336, 368, 384, 400, ... - R. J. Mathar, Apr 22 2010
Or exponentially Fibonacci numbers. - Vladimir Shevelev, Nov 15 2015
Sequences A004709, A005117, A046100 are subsequences. - Vladimir Shevelev, Nov 16 2015
Let h_k be the density of the subsequence of A115063 of numbers whose prime power factorization has the form Product_i p_i^e_i where the e_i all squares <= k^2. Then for every k>1 there exists eps_k>0 such that for any x from the interval (h_k-eps_k, h_k) there is no sequence S of positive integers such that x is the density of numbers whose prime power factorization has the form Product_i p_i^e_i where the e_i are all in S. For a proof, see [Shevelev], the second link. - Vladimir Shevelev, Nov 17 2015
Numbers whose sets of unitary divisors (A077610) and Zeckendorf-infinitary divisors (see A318465) coincide. Also, numbers whose sets of unitary divisors and dual-Zeckendorf-infinitary divisors (see A331109) coincide. - Amiram Eldar, Aug 09 2024

Examples

			12 is a term, since 12=2^2*3^1 and the exponents 2 and 1 are terms of Fibonacci sequence (A000045). - _Vladimir Shevelev_, Nov 15 2015
		

Crossrefs

Programs

  • Mathematica
    fibQ[n_] := IntegerQ @ Sqrt[5 n^2 - 4] || IntegerQ @ Sqrt[5 n^2 + 4]; aQ[n_] := AllTrue[FactorInteger[n][[;;, 2]], fibQ]; Select[Range[100], aQ] (* Amiram Eldar, Oct 06 2019 *)

Formula

Sum_{i<=x, i is in A115063} 1 = h*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and h = Product_{prime p}(1 + Sum_{i>=2} (u(i)-u(i-1))/p^i) = 0.944335905... where u(n) is the characteristic function of sequence A000045. The calculations of h over the formula were done independently by Juan Arias-de-Reyna and Peter J. C. Moses.
For a proof of the formula, see [Shevelev], the first link. - Vladimir Shevelev, Nov 17 2015

Extensions

a(35) inserted by Amiram Eldar, Oct 06 2019

A334393 Numbers of the form p^q where p and q are either 1 or prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251
Offset: 1

Views

Author

Kevin Foote, Apr 26 2020

Keywords

Comments

First differs from A115975 at a(42). - Omar E. Pol, Apr 26 2020

Crossrefs

Union of A008578 and A053810.
Cf. A115975.

Programs

  • Mathematica
    Select[Range[250], Length[(f = FactorInteger[#])] == 1 && ((e = f[[1, 2]]) == 1 || PrimeQ[e]) &] (* Amiram Eldar, Apr 27 2020 *)
  • PARI
    isok(n) = if (n==1, return (1)); my(k=isprimepower(n)); (k==1) || isprime(k); \\ Michel Marcus, Apr 27 2020
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A334393(n):
        def f(x): return int(n-1+x-primepi(x)-sum(primepi(integer_nthroot(x, p)[0]) for p in primerange(x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 13 2024

A375270 Numbers of the form p^Fibonacci(2*k), where p is a prime and k >= 0.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 256
Offset: 1

Views

Author

Amiram Eldar, Aug 09 2024

Keywords

Comments

Differs from A186285 by having the terms 1, 2^8 = 256, 3^8 = 6561, ..., and not having the terms 2^9 = 512, 3^9 = 19683, ... .
The partial products of this sequence (A375271) are the sequence of numbers with record numbers of Zeckendorf-infinitary divisors (A318465).

Examples

			The positive even-indexed Fibonacci numbers are 1, 3, 8, 21, ..., so the sequence includes 2^1 = 2, 2^3 = 8, 2^8 = 256, ..., 3^1 = 3, 3^3 = 27, 3^8 = 6561, ... .
		

Crossrefs

Subsequence of A115975.
Subsequences: A000040, A030078, A179645.
Cf. A000045, A001906, A050376, A186285, A318465, A375271 (partial products).

Programs

  • Mathematica
    fib[lim_] := Module[{s = {}, f = 1, k = 2}, While[f <= lim, AppendTo[s, f]; k += 2; f = Fibonacci[k]]; s];
    seq[max_] := Module[{s = {1}, p = 2, e = 1, f = {}}, While[e > 0, e = Floor[Log[p, max]]; If[f == {}, f = fib[e], f = Select[f, # <= e &]]; s = Join[s, p^f]; p = NextPrime[p]]; Sort[s]]; seq[256]
  • PARI
    fib(lim) = {my(s = List(), f = 1, k = 2); while(f <= lim, listput(s, f); k += 2; f = fibonacci(k)); Vec(s);}
    lista(pmax) = {my(s = [1], p = 2, e = 1, f = []); while(e > 0, e = logint(pmax, p); if(#f == 0, f = fib(e), f = select(x -> x <= e, f)); s = concat(s, apply(x -> p^x, f)); p = nextprime(p+1)); vecsort(s);}

Formula

a(n) = A375271(n)/A375271(n-1) for n >= 2.
Showing 1-8 of 8 results.